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Abstract. Semi-supervised anomaly detection is based on the principle
that potential anomalies are those records that look different from nor-
mal training data. However, in some cases we are specifically interested
in anomalies that correspond to high attribute values (or low, but not
both). We present two asymmetrical distance measures that take this
directionality into account: ramp distance and signed distance. Through
experiments on synthetic and real-life datasets we show that ramp dis-
tance performs as well or better than the absolute distance traditionally
used in anomaly detection. While signed distance also performs well on
synthetic data, it performs substantially poorer on real-life datasets. We
argue that this reflects the fact that in practice, good scores on some
attributes should not be allowed to compensate for bad scores on others.
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1 Introduction

A defining characteristic of semi-supervised anomaly detection (also known as
one-class classification [22]) is that the training set only contains normal data,
but that we still want to create a model that can distinguish between normal
and anomalous data. Potential reasons for working in this setting include not
wanting to assume that the available examples of anomalies are representative
of all anomalies, and wanting to flag all data that is different from normal data
as a potential anomaly. Examples of application domains of anomality detection
include failure detection in industrial settings and screening patients in health-
care.

In the present paper, we are specifically concerned with quantitative tabu-
lar data, where the training set consists of a representative sample of a certain
normal target class. In this context, all semi-supervised anomaly detection al-
gorithms are necessarily based on the principle that anomality increases with
distance away from the normal training data in the feature space. However,
there are circumstances in which we possess additional helpful domain knowl-
edge. In this paper, we consider how best to deal with the knowledge that only
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relatively high values of an attribute should be indicative of anomality, not rela-
tively low values (or vice-versa). For instance, certain attributes may correspond
to higher strain of a machine, or encode known risk factors for patients. In such
cases, we may want to decide that we are only interested in detecting anomalies
that express high strain, or high risk factors, i.e., that we want to detect ma-
chine failure and at-risk patients, rather than underutilisation and exceptionally
healthy patients.

To this end, we propose adaptations of two effective anomaly detection al-
gorithms, Nearest Neighbour Distance (NND) and Average Localised Proximity
(ALP), that take this directionality into account.

Other attempts to take domain knowledge into account include contextual
anomaly detection, where anomality is conditioned on one or more contextual
attributes [19, 14], and fair anomaly detection, where the goal is to ensure that
anomalies follow the same distribution over one or more sensitive attributes as
normal records [16, 26, 18]. However, to the best of our knowledge, this is the
first work to investigate directional anomaly detection.

2 Background: NND and ALP

Semi-supervised anomaly detection algorithms, also known as one-class classi-
fiers or data descriptors, take a training set X consisting of normal data and
learn a model that assigns an anomaly score to new instances. In the present
paper, we will use two such algorithms: Nearest Neighbour Distance (NND) and
Average Localised Proximity (ALP), both of which are directly based on distance
measurements in the feature space.

2.1 NND

NND is one of the simplest anomaly detection algorithms and goes back to at
least [10]. In NND, the anomaly score of a test record corresponds to the distance
to its kth nearest neighbour in the training set. Despite its simplicity, NND
performs surprisingly well across diverse datasets [12], making it an attractive
baseline. In [11], a slight modification was proposed, taking the linearly weighted
average of the first k nearest neighbour distances. Thus, the anomality score of
a test record y becomes ∑

i≤k

wi · di(y), (1)

where di(y) is the ith nearest neighbour distance of y in the training set according
to some distance measure d, and wi is the ith weight.

2.2 ALP

The idea of ALP [12] is to offset nearest neighbour distance against what is
typical for normal data in that part of the feature space. It is based on the
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earlier form of localised nearest neighbour distance first proposed in [17] and
[23].

ALP calculates a normality score in [0, 1] for a test record y by taking the
so-called weighted maximum of its localised proximity values:

wmax (lpi(y))i≤k, (2)

for a choice of k ≥ 1 and weight vector w, where the weighted maximum wmax
is defined by

wmax X =
∑
i≤k

wi ·X(i), (3)

for any collection X, where X(i) is the ith largest element of X; and where lpi(y)
is the ith localised proximity of y to the training set, defined by

lpi(y) =
Di(y)

Di(y) + di(y)
, (4)

where di(y) is the ith nearest neighbour distance of y in the training set according
to some distance measure d, and Di(y) is the average ith nearest neighbour
distance in the training set local to y, defined as

Di(y) =
∑
j≤l

w′
j · di(NNj(y)), (5)

for a choice of l ≥ 1 and weights w′
j , where NNj(y) is the jth nearest neighbour

of y in the training set.
Note that k fulfills a similar role as k in weighted NND, whereas l controls

the amount of localisation (lower values correspond to more localisation).

2.3 Hyperparameters

For both NND and ALP, the values k and l, the various weights and the distance
measure are hyperparameters, which can in principle be tuned when there are
anomalities available for validation purposes [13]. In general, however, we have
to use sensible default values.

A typical choice for the distance d is a form of the Minkowski p-distance:

d(y, x) =

∑
j≤m

|yj − xj |p
 1

p

, (6)

for some value p ≥ 0. The two most frequently used measures are p = 2, which is
Euclidean distance, and p = 1, which is Boscovich distance, also known as city-
block, Manhattan or rectilinear distance. For NND, Boscovich distance generally
outperforms Euclidean distance [12, 11], while for ALP this is the standard choice
anyway [12]. For both weighted NND and ALP, the default choice is to use



4 O U Lenz & M van Leeuwen

linearly descending weights everywhere [12, 11]. For unweighted NND, k = 1 is
optimal [12], but for weighted NND slightly higher values like k = 8 increase
general performance [11]. For ALP, k = 5.5 log n and l = 6 log n have been
established as optimal default values [12], where n is the number of training
records.

While not typically seen as a hyperparameter, both NND and ALP are also
dependent on the relative scale of the attributes.

3 Directional anomaly detection

As discussed in the introduction, we want to find a way to take into account
directional attributes, for which we should only interpret extreme values in one
direction as anomalous. Without loss of generality, we will assume that high val-
ues correspond with anomality — any attributes for which the opposite applies
can be transformed with a sign change. We will use the following potentially
asymmetric distance measure:3

d(y, x) =
∑
j≤m

dj(yi − xi), (7)

and consider three variants of the per-attribute distance dj(yi−xi), listed in Ta-
ble 1. Absolute distance is the baseline. It corresponds to the existing Boscovich
distance, i.e. Minkowski distance (6) with p = 1. Ramp distance is the result
of applying the ramp function to the difference yj − xj . The ramp function is
also known as the rectifier function, or rectified linear unit (ReLU), which is a
popular activation function in neural networks [4]. Signed distance is simply the
identity function applied to yj − xj .

Table 1. Variant approaches to directional attributes.

Variant dj(yi − xi)

Absolute |yj − xj |
Ramp max(0, yj − xj)
Signed yj − xj

All three variants agree for positive values of yj − xj ; they interpret this as
positive evidence for the anomality of y. They differ with respect to negative
values of yj − xj , i.e., they differ in how to account for test values that are
lower than the reference value in the training set. Absolute distance counts such

3 Note that while this introduces ramp distance and signed distance as variants of
Boscovich distance, it is also possible to substitute ramp distance in the calculation
of Minkowski distance (6) with other values of p, and in particular for Euclidean
distance. For signed distance, adapting Minkowski distance requires more work.
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low values as positive evidence for the anomality of y just as it does high values,
thereby ignoring the directionality of the attribute j. In contrast, signed distance
interprets such low values as negative evidence for anomality, which can offset
high values in other attributes. Finally, ramp distance stakes out the middle
ground by interpreting such values as a lack of evidence either way.

Next, we consider how these variant distances affect NND and ALP. We can
simply substitute the ramp distance into the overall distance for all directional
attributes, and calculate the nearest neighbour distances according to the re-
sulting measure.

For signed distance, the situation is not so straightforward. Note first that
when all attributes are directional and we use signed distance, the nearest neigh-
bour of any test record y is the training instance x that minimises

∑
i(yi − xi).

This is the training instance with the largest attribute value sum
∑

i xi, and this
does not depend on the test instance. Analogously, all test instances share the
same subsequently nearest neighbours. Consequently, we can disregard nearest
neighbours altogether, and simply compare the attribute sums of test records.
Note that we still use the training set to determine the right scale of each at-
tribute. Nevertheless, because we no longer need to perform any nearest neigh-
bour queries we end up with a significant computational simplification.
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Fig. 1. A dataset with one directional and one adirectional attribute, one test record
y and two training records x and x′. See text for discussion.
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What should we do when we have a mixture of adirectional and directional
attributes? One option is to add the signed distance from the directional at-
tributes and the absolute distance from the adirectional attributes together to
obtain a mixed distance between every test and training record and use this to
identify the nearest neighbour distances of every test record. However, this would
lead to the paradoxical situation illustrated by Fig. 1. The nearest neighbour of
y is x′, since its mixed distance 4 − 6 = −2 is smaller than the mixed distance
2 + 0 = 2 between y and x. However, in terms of absolute distance, y is clearly
more similar to x, even if we only consider the adirectional attribute, and so it
seems nonsensical to calculate the anomality of y on the basis of its distance to
x′.

Therefore, we propose that for NND modified with signed distance, the right
order of things is to seperately calculate the risk score for the directional at-
tributes and the nearest neighbour distance for the adirectional attributes and
add these together to obtain a single anomality score. Because of its effect on
nearest neighbour calculations, we will not attempt to use signed distance with
ALP.

4 Experiments on synthetic datasets

In order to evaluate our proposal, we construct a series of synthetic datasets, each
containing 1000 normal training records and 200 test records — 100 normal and
100 anomalous. Each record consists of 10 attributes with randomly generated
values. We will consider two types of attributes. First, we generate datasets
with continuous attributes, where both normal and anomalous values follow a
Gaussian distribution with standard deviation 1, centred on 0 and a respectively.
We let a vary between 0 and 1 in steps of 0.1. Secondly, we generate datasets
with binary attributes, where normal and anomalous values follow Bernoulli
distributions with p = 0.5− 0.5 · b and p = 0.5+0.5 · b respectively, for which we
let b vary between 0 and 0.5 in steps of 0.05. For each value of a and each value
of b we generate 100 datasets.

We evaluate anomaly detection performance using the area under the receiver
operating characteristic (AUROC). This expresses the ability of an anomaly de-
tector to separate anomalies from normal data. For this purpose, we monotoni-
cally transform the NND distance from (1) to an anomaly score in [0, 1] with:

a 7−→ 1

2
· a

|a|+ 1
+

1

2
. (8)

We do this for absolute distance, ramp distance and signed distance. The
results for NND are displayed in Figure 2. For the Gaussian attributes, signed and
ramp distance perform substantially better than absolute distance, for small and
large k, in line with our directional hypothesis. Signed distance performs slightly
better than ramp distance, but the difference is small. For Bernoulli attributes,
the picture looks a bit different. At k = 1, signed distance outperforms absolute
distance, but ramp distance performs worse than absolute distance. At k = 8,
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Fig. 2. Mean AUROC obtained with NND for synthetically generated datasets with
Gaussian and Bernoulli attributes. a: distance between the distributions of anomalous
and normal attribute values; b: difference between the probability of a positive anoma-
lous and a positive normal attribute value.
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Fig. 3. Mean AUROC obtained with ALP for synthetically generated datasets with
Gaussian and Bernoulli attributes. a: distance between the distributions of anomalous
and normal attribute values; b: difference between the probability of a positive anoma-
lous and a positive normal attribute value.

the gap between signed and absolute distance has tightened considerably, and
ramp distance now sits in between. At k = 100, signed and ramp distance have
become indistinguishable in terms of performance, and absolute distance is only
very slightly behind.

For ALP, the results for the default hyperparameter values k = 5.5 log 1000 =
38 and l = 6 log 1000 = 41 are displayed in Table 3. For both Gaussian and
Bernoulli attributes, ramp distance outperforms absolute distance, although
more clearly so for Gaussian attributes.

Taken together, these results suggest that when we know for a given attribute
that anomalies have a higher mean value than normal data, we should indeed
use signed or ramp distance rather than absolute distance. Between these two
variants, signed distance appears to have the advantage with NND, but we will
see in the next section that the situation is different for real-life datasets.

5 Experiments on real-life datasets

We will now evaluate our proposal on a number of real-life datasets from the UCI
repository [3] that can be approached as directional anomaly detection problems.
The main properties of these datasets are listed in Table 2. The attributes of
these datasets express machine operating conditions (ai4i2020 ), medical symp-
toms, comorbidities and lifestyle factors (diabetes-risk, fertility, heart-failure,
post-operative and thoraric-surgery), tumor characteristics (wdbc, wisconsin and
wpbc), and risk indicators provided by experts (phishing-websites, qualitative-
bankrupty and south-german-credit). ai4i2020 and post-operative contain a mix-
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Table 2. Real-life datasets used in the experiment. m: number of attributes.

Dataset Source Records Anomalies m

ai4i2020 [15] 10 000 Simulated machine
operation records

339 Five different fail-
ure modes (not dis-
tinguished by the
label)

6

diabetes-risk [8] 520 Patients with dia-
betes symptoms

320 Patients actually
diagnosed with
diabetes

14

fertility [5] 100 Sperm samples 12 ‘Altered’ samples 8
heart-failure [1] 299 Heart patients 96 Patients who died

in the follow-up pe-
riod

11

phishing-websites [24] 11 055 Websites 4898 Phishing websites 30
post-operative [2] 87 Patients who have

undergone surgery
63 Patients who had

to stay in hospital
8

qualitative-bankruptcy [9] 250 Companies 107 Companies that
went bankrupt

6

south-german-credit [6] 1000 Credits provided
by a bank

300 Bad credits 20

thoraric-surgery [27] 470 Primary lung can-
cer patients who
underwent major
lung resections

70 Patients who died
within one year

16

wdbc [21] 569 Images of aspi-
rated breast tumor
samples

212 Malignant tumors 30

wisconsin [25] 683 Fine-needle as-
pirates of breast
tumors

239 Malignant tumors 9

wpbc [20] 138 Patients who have
undergone surgery
for an invasive ma-
lignant breast can-
cer tumor with no
evidence of distant
metastases

28 Patients who expe-
rienced recurrence
within two years

32
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Table 3. Mean cross-validation AUROC for the absolute, ramp and signed distance
variants. Bold: highest value (before rounding) for NND and ALP, respectively.

Dataset NND ALP
Absolute Ramp Signed Absolute Ramp

ai4i2020 0.823 0.922 0.724 0.877 0.924
diabetes-risk 0.971 0.923 0.716 0.895 0.926
fertility 0.602 0.653 0.540 0.581 0.636
heart-failure 0.715 0.769 0.735 0.734 0.766
phishing-websites 0.901 0.927 0.804 0.927 0.936
post-operative 0.476 0.504 0.557 0.459 0.484
qualitative-bankruptcy 1.000 1.000 0.998 1.000 1.000
south-german-credit 0.648 0.718 0.683 0.648 0.714
thoraric-surgery 0.597 0.624 0.583 0.634 0.621
wdbc 0.950 0.976 0.969 0.957 0.981
wisconsin 0.995 0.994 0.995 0.872 0.995
wpbc 0.570 0.625 0.633 0.537 0.654

ture of directional and adirectional attributes, the other datasets only have di-
rectional attributes.

As in the previous section, we use AUROC to evaluate anomaly detection
performance. We perform 5-fold cross-validation on the normal records from
each dataset, creating at each iteration a test set by combining one fifth of the
normal records with all anomalous records. For NND, we use linear weights and
fix k = 8. We rescale all attributes by subtracting the midhinge and dividing
by the semi-interquartile range of the normal training values, such that the
interquartile range becomes [-1, 1] in the training data.

Table 3 lists the mean cross-validation AUROC obtained by the various vari-
ants for each dataset. The first thing to note is that for NND, unlike what we
saw for synthetic data in the previous section, ramp distance generally performs
(much) better than signed distance. The only datasets for which signed distance
performs better are post-operative and wpbc, for which the AUROC scores are
very low anyway. When we perform a one-side Wilcoxon signed-rank test, we
obtain a p = 0.021. We can conclude from this that real-life anomaly detection
problems are different from our synthetic datasets in one important aspect: an
unexpectedly low score on one risk factor does not compensate for high scores
on other risk factors.

However, these experiments do confirm the usefulness of directional anomaly
detection, because ramp distance performs about as well or better than absolute
distance. For NND, the signed-rank test gives p = 0.011, or p = 0.023 if we
apply Holm-Bonferroni correction [7] for multiple testing, while for ALP it gives
p = 0.0029.

There is one notable exception: diabetes-risk for NND. A potential expla-
nation for this is the fact that the attributes of this dataset encode diabetes
symptoms, and that moreover, the normal records do not represent average
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healthy people, but non-diabetes patients who nevertheless display symptoms
of diabetes. Consequently, this may undermine the directionality of this dataset
— diabetes patients may not necessarily have more symptoms than this par-
ticular group of other patients, but rather different combinations of symptoms,
which would make absolute distance a better fit than ramp distance.

Indeed, when we look at the mean attribute values of normal and anomalous
records in this dataset, we find that for five of the fourteen attributes, the anoma-
lous records (diabetes patients) have lower or only slightly higher mean values
than the normal records. If we rerun the experiment while treating these five
attributes as non-directional, the AUROC obtained by ramp distance matches
that of absolute distance.

6 Conclusion

In this paper, we have introduced directional anomaly detection, a new problem
setting wherein only high (or only low) values of certain attributes are indicative
of anomality, and which can therefore be viewed as risk factors. We have proposed
two different ways of adapting distance-based anomaly detection algorithms to
make use of this knowledge: ramp distance and signed distance. The difference
between these two variants corresponds to a choice in how a practitioner wants
to interpret an unexpectedly low value on a given risk factor. With ramp dis-
tance, such low values are simply discounted, whereas with signed distance, they
contribute negative evidence against anomality. Both variants contrast with ab-
solute distance, the non-directional baseline wherein such low values contribute
positive evidence for anomality.

In an experiment with synthetically generated Gaussian and Bernoulli data,
we found that signed distance is able to achieve slightly higher anomaly detection
than ramp distance. However, in a subsequent experiment with real-life datasets,
ramp distance performed substantially better. We conclude from this that in
typical real-life use cases, unexpectedly low values on risk factors should not
compensate for high values on other risk factors.

We also found that ramp distance generally performed as good or better than
absolute distance. Therefore, we recommend the use of ramp distance when a
practitioner knows that some of the attributes in their dataset are really risk
factors.

Finally, we will end by briefly considering what it means if, for a given dataset,
ramp distance should nevertheless result in worse anomaly detection performance
than absolute distance. One possibility is that the directional hypothesis is false
for one or more of the attributes, that there is a good reason after all why (some)
anomalies should have lower values than normal. This is in fact what we saw with
one of the real-life datasets that we evaluated, the only dataset where absolute
distance clearly performed better than ramp distance for NND.

The other possibility is that there is no clear explanation, no plausible causal
relation linking a lower attribute value to a higher risk of abnormality. In that
case using ramp distance may still be preferable, because it better matches the
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domain knowledge of the practitioner, resulting in a more interpretable predic-
tion model.
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