
Same bang, fewer bucks: efficient discovery of the cost-influence skyline

Matthijs van Leeuwen∗ Antti Ukkonen†

Abstract
Influence maximization aims to find a set of persons in a
social network that can be used as seeds for a viral marketing
campaign, such that the expected spread of influence is
maximized. Standard approaches to this problem produce a
single seed set that either maximizes influence, or the “bang
for the buck” if the vertices are associated with a cost.

In this paper we consider the problem of finding the
cost-influence skyline, i.e., the collection of all seed sets that
are Pareto optimal w.r.t. seeding cost and expected influ-
ence. Computing the cost-influence skyline has a number of
advantages over finding a single solution only. First, it pro-
vides a better understanding of the trade-off between cost
and influence, which enables the user to make an informed
choice regarding the budget. Second, by computing the cost-
influence skyline we obtain the optimal seed set for any given
seeding budget, not only the one that corresponds to single-
ton solutions found by existing algorithms.

In practice, the problem is to discover the skyline
w.r.t. two functions spanned by all subsets of size k of a
set of vertices. Due to the extremely large number of such
subsets, this is a very hard problem. We present an efficient
heuristic algorithm for computing the skyline when one of
the functions is linear (e.g., the seeding cost) and the other
submodular (e.g., expected influence). The experiments
show that the cost-influence skyline can be computed in
reasonable time for networks with up to a million vertices.

Keywords: influence maximization, Pareto front, sky-

line, algorithms, viral marketing

1 Introduction

Viral marketing aims to use existing social networks for
marketing purposes, e.g., to increase product sales. By
introducing a message that is designed to go viral, the
goal is that persons will share the message with their
contacts. An important parameter is the set of persons
that is initially targeted: by choosing a set of influential
persons that are widely distributed in the network, it
becomes more likely for the message to go viral. The
problem of selecting an influential set of persons has
been formalized as a discrete optimization problem in
the seminal paper by Kempe et al. [11]. Informally, the
goal of the influence maximization (InfMax) problem
is to select k persons, often called seeds, such that the
expected spread of influence is maximized.

∗Machine Learning, Department of Computer

Science, KU Leuven, Leuven, Belgium, email:
matthijs.vanleeuwen@cs.kuleuven.be.
†Helsinki Institute for Information Technology HIIT, Aalto

University, and, Finnish Institute of Occupational Health, email:
antti.ukkonen@ttl.fi

The standard problem does not take into account
the costs of targeting individual seeds, which may be
variable in practice. Consider, for example, a company
giving away for free k products. Although the product
costs are constant and can therefore be ignored, mailing
costs might depend on the geographical locations of the
persons. When there are no direct costs, costs could
represent the lost sales due to giving away products,
i.e., the expected loss of income due to the k seeds
not buying the product. As a final example, consider
a company that aims to convince k potential buyers to
adopt a certain product by offering personalized rebates.
Here, the cost associated with a seed is the amount of
the rebate that is deemed necessary to convince this
person to buy the product.

Clearly, this (literally) adds a new dimension to
the problem: higher seeding costs are likely to permit
larger expected influence spreads. In general, different
campaign budgets will correspond to different influence-
maximizing seed sets. This raises a hard question: how
to choose a budget without having any knowledge about
the trade-off between cost and expected influence? The
standard greedy approach [11] is cost-oblivious and its
solution may be more expensive than the budget allows.
An alternative would be to optimize the cost-influence
ratio [12], but this “bang-for-the-buck” (BFTB) ap-
proach also gives you just one solution – if the budget
exceeds the costs for this seed set, the method cannot
identify other, more appropriate solutions.

1.1 Approach and contributions To solve this
problem, we introduce the cost-influence skyline, i.e.,
the Pareto optimal front of seed sets of size k with
respect to cost and expected influence spread. Each
solution on the skyline is non-dominated, meaning that
there exists no seed set for which either cost or influence
can be improved without adversely affecting the other
quantity. Hence, each Pareto optimal seed set by
definition provides a favorable trade-off between cost
and influence and is therefore a desirable solution.

We consider two skyline variants. The first variant
consists of seed sets of size exactly k, which could
be interpreted as, e.g., giving away for free exactly k
products. It can also be useful, however, to interpret k
as the maximum number of desired seeds and thus the



0 200 400 600 800 1000 1200
0

20

40

60

80

100

cost

in
flu

en
ce

skyline (k≤50)
skyline (k=50)
INFMAX
BFTB

Figure 1: Cost-influence skylines for com-dblp, obtained
using the Fast-Skyline algorithm that we introduce in
this paper (black: k ≤ 50, gray: k = 50). The red dots
resp. green crosses show the sequences of solutions for
k = 1 to 50 found by the cost-oblivious greedy influence
maximization algorithm [11] resp. the bang-for-the-buck
greedy algorithm [12]. Vertex costs are random and
p = 0.01; see Section 6 for more details.

second variant is the global skyline over all seed sets of
sizes 1 up to k. As we will show, our approach allows
to naturally obtain both skylines at the same time.

Figure 1 shows example cost-influence skylines that
were obtained by the algorithm that we introduce.
For comparison, the figure also depicts sequences of
consecutive solutions obtained with the standard and
bang-for-the-buck greedy algorithms. This shows that
the k ≤ 50 skyline includes all Pareto optimal solutions
found by the two existing methods, but additionally
provides a number of potentially interesting alternatives
spanning a large cost range. Moreover, the skyline
reveals that it is possible to choose a seed set with much
lower cost than 1200, the cost of the InfMax solution,
while hardly giving in on influence – we can get almost
the same, maximum bang for much fewer bucks.

More formally, we consider given a (social) network
G, the number of seeds k, an influence function I(X)
that returns the expected number of influenced (and
activated) nodes when seeding X, and a cost function
C(X) that gives the seeding cost of X. Furthermore,
the seeding cost of a seed set is simply the sum of the
individual costs, i.e., C(X) =

∑
x∈X C(x), where C(x)

is the seeding cost of x. The problem is to find the cost-
influence skyline, that is, all seed sets that are Pareto
optimal with respect to I(·) and C(·).

In short, the main contributions of this paper are:

1. We formalize the problem of discovering cost-
influence skylines and prove that this is an NP-hard
problem when I(·) is submodular.

2. We introduce Fast-Skyline, an efficient and effec-

tive heuristic algorithm for computing skylines. The
algorithm performs levelwise search and the solu-
tions it finds are guaranteed to include the solution
found by the standard greedy method.

3. We empirically demonstrate that cost-influence sky-
lines can be computed in reasonable time for net-
works containing up to a million vertices. We com-
pare its performance to that of the naive skyline al-
gorithm that we introduced in the context of pattern
mining [19] and show that Fast-Skyline is orders
of magnitude faster. Furthermore, we show that the
proposed pruning technique is often nearly optimal.

4. We show that cost-influence skylines provide useful
insight into the trade-off between cost and expected
influence, and provides a wider range of (budgetary)
options than existing methods.

Note that a propagation model is needed to com-
pute the expected spread of influence for a given seed
set. One of the commonly used propagation models is
the independent cascade model [11], which has the large
advantage that influence spread is submodular. As a
consequence, the standard greedy algorithm is guaran-
teed to give good approximations [16]. In the remain-
der of this paper, we consider the independent cascade
model with constant probabilities, but our methods are
agnostic w.r.t. the propagation model as long as the in-
fluence function I(·) is submodular, and C(·) is a linear
function of vertex-specific costs.

We continue with a discussion of related work in
Section 2. After providing definitions and background
information in Sections 3 and 4 respectively, Section 5
introduces Fast-Skyline. Our approach is empirically
evaluated in Section 6 and we conclude in Section 7.

2 Related work

Conceptually the cost-influence skyline that we propose
is inspired by optimal portfolio theory [15]: for any
given cost (risk) we should find the seed set (portfolio of
securities) that maximizes influence (return). The word
“skyline” is inspired by database literature [4], that uses
the same expression to describe a set of Pareto optimal
solutions. However, the main technical challenge we
face is that of finding the Pareto optimal subsets of size
k subject to two functions, not computing the Pareto
optimal solutions of aggregates over a database table.

This problem also appears in the context of multi-
objective combinatorial optimization, see [7, 8] for sur-
veys on that topic. The main difference to that line
of work is that we want to compute all Pareto optimal
solutions rather than, e.g., use a utility function (i.e.,
scalarization) to select one of the Pareto optimal solu-
tions. Instead, we substantially extend our work in [19]



to handle much larger problem instances, and show how
skylines can be applied in the context of viral marketing.

The seed selection problem for influence maximiza-
tion was originally introduced by Kempe et al. [11], and
has attracted considerable attention during the past ten
years. Giving a comprehensive survey is beyond the
scope of this paper. For a recent survey we refer to [2].

Influence maximization under the independent cas-
cade model can be seen as a set-cover type of problem,
and hence a greedy algorithm that maximizes marginal
gains is a common solution. A trivial implementation,
however, is not scalable for large networks. There-
fore, several approaches to speed up influence estima-
tion have been proposed [12, 5, 10]. Most recent in this
line of work are [6, 3, 18]; all avoid simulating the inde-
pendent cascade model during the seed selection phase
by using pre-computed data structures. We make use
of the same technique (in particular the one proposed
in [6]) to speed up evaluating I(·). However, any other
technique could be applied by our algorithm as well.

Seed selection has also been considered in the
context of several marketing scenarios. Recently, Lu
and Lakshmanan [14] introduced the ProMax problem,
which consists of both assigning individual product
prices to each person and selecting a seed set that
maximizes profit. Since the influence function is still
submodular, the greedy algorithm can still be used.
Apart from that, methods are introduced to determine
the price vectors. Lu et al. [13] consider the seed
selection problem when marketing campaigns for several
competing products are launched at the same time.
Finally, [9] consider the seed selection problem when
propagation time is taken into account.

3 Problem definition and complexity

We assume given a graph, denoted by G = (V,E),
with V the set of vertices and E the set of edges. Let
Vi = {X ⊂ V | |X| = i}. We assume given an influence
function I(·) that is submodular, and a cost function
C(·) that is the sum of vertex-specific costs. We use the
independent cascade model [11] in our experiments, but
any submodular influence function can be used.

Definition 1. The influence function I(·) is submod-
ular whenever

I(X ∪ u)− I(X) ≤ I(Y ∪ u)− I(Y )

for every u ∈ V and Y ⊆ X ⊆ V .

In general, the skyline, or Pareto front, of a set of
points are those points that are not dominated by any
other point in the set. We define dominance for two sets
of vertices in terms of cost and influence, as follows.

Definition 2. Let X,Y ⊂ V . The set Y dominates
the set X in terms of C(·) and I(·), denoted Y � X, iff(

C(Y ) < C(X) and I(Y ) ≥ I(X)
)

or(
I(Y ) > I(X) and C(Y ) ≤ C(X)

)
.

That is, the set Y dominates the set X if it has strictly
lower cost or higher influence than X, and is at least at
the level of X w.r.t. the other function.

Definition 3. The cost-influence skyline of all i-sized
subsets of V is defined as the set

Pi = {X ∈ Vi |6 ∃Y ∈ Vi s.t. Y � X}.

Our main problem is that of computing the cost-
influence skyline of all k-sized vertex sets1.

Problem 1. (Cost-influence skyline) Given the
graph G = (V,E), an integer k, the cost function
C(·), and the influence function I(·), compute the
cost-influence skyline Pk as defined in Definition 3.

Observe that the complexity of finding the skyline for
a given set of points is polynomial in the number of
the points. However, in this case the size of the input
is in fact exponential in the size of V , because we are
computing the skyline over Vk, and |Vk| =

(|V |
k

)
. Any

trivial algorithm for computing skylines can thus not be
used. Moreover, we can easily show that this problem
is NP-hard for submodular influence functions.

Proposition 3.1. For submodular influence functions
I(·), the Cost-influence skyline problem (Prob-
lem 1) is NP-hard.

Proof. Recall that the problem of finding the set X∗ ∈
Vk that maximizes influence is NP-hard when I(·) is
submodular. Now, observe that X∗ must belong to Pk,
because X∗ has the largest influence among all sets in
Vk by definition. Hence, computing Pk must be at least
as hard as computing X∗. �

We are thus not aiming to find optimal skylines, but
focus on finding good skylines instead.

4 Levelwise skyline search

In this section we discuss a greedy, levelwise approach
to computing the skyline of Vk.

1For reasons of brevity, we only define and analyze the skyline

problem for seed sets of exactly size k, but we will also show how
our approach finds skylines of seed sets of sizes 1 up to k.



Algorithm 1 Naive-Skyline(X1, . . . , Xn)

1: initialize the list L← [X1, X2, . . . Xn]
2: sort L in increasing order of C(Xi)
3: Imax ← 0
4: P ← ∅
5: for i = 1 to |L| do
6: X ← L[i]
7: if I(X) > Imax then
8: Imax ← I(X)
9: P ← P ∪X

10: return P

4.1 A naive skyline algorithm We start by dis-
cussing a simple algorithm for computing the skyline
of a given set of vertex subsets X1, . . . Xn with respect
to C(Xi) and I(Xi). This algorithm, called Naive-
Skyline, shown in Algorithm 1, scans over the Xi in
increasing order of C(Xi), and keeps track of the largest
influence, denoted Imax, seen so far. A subset X enters
the skyline P if I(X) is larger than Imax. It is easy to
see that this algorithm will only include non-dominated
points into P , and moreover, it will include all non-
dominated points into P .

4.2 A greedy strategy for skyline search The
brute force solution to Problem 1 of first materializing
all
(|V |

k

)
subsets of size k and running Algorithm 1 on

these is clearly infeasible even for relatively small |V |
and k. The Levelwise heuristic proposed in [19] avoids
considering all possible subsets by employing a greedy
strategy. It computes Pi given Pi−1 by first combining
every point in Pi−1 with every possible vertex in V ,
and then finds the skyline of the resulting set of points
using, e.g., Algorithm 1. More formally, we define the
expansion of Pi−1 as

E(Pi−1) = {X ∪ u | X ∈ Pi−1 ∧ u ∈ V \X}.

Every subset in E(Pi−1) is thus of the form X∪u, where
X ∈ Pi−1, and u is some vertex not in X. Levelwise
starts with P0 = {∅} and iterates the following equation
from i = 1 until i = k:

(4.1) Pi = Naive-Skyline(E(Pi−1)).

The skyline Pi is thus defined as the skyline of the
expansion of Pi−1. In [19] it was shown that, in the
context of pattern set mining, this heuristic produces
skylines that are very close to the exact skylines.

The levelwise search procedure procedure is illus-
trated in Figure 2, which shows (hypothetical) cost-
influence skylines for k = 1 to 3. In practice the skyline
moves towards higher cost and influence as k increases.

I(X
)

C(X)

k = 1

k = 2

k = 3k ≤ 3

Figure 2: Levelwise cost-influence skyline search. Start-
ing from the skyline for k = 1 (orange dots), each point
on the skyline is expanded in every possible way. From
the generated candidates, the skyline for k = 2 is ob-
tained (blue dots). This procedure is repeated until the
desired k is reached; in this case k = 3 (green dots).
The black circles indicate the global skyline for k ≤ 3.

A key advantage of levelwise search is that the process
of obtaining the skyline for a fixed k actually provides
all skylines for sizes 1 up to k. As a consequence, the
online and iterative computation of the global skyline
is trivial: start with P global

1 = P1 and then compute

P global
i as the skyline of P global

i−1 and Pi, which can be
done, e.g., using Algorithm 1. Hence, we obtain not
only the skyline for a fixed seed set size, but also the
global skyline for seed sets up to that size. Figure 2
shows an example of such a global skyline for k ≤ 3.

4.3 Theoretical results for levelwise skyline
search Next we present some results that show how the
(single-level) skyline found by the levelwise approach re-
lates to the solutions found by standard greedy meth-
ods. First, for any k, the skyline Pk found by the level-
wise algorithm contains the solution found by the sim-
ple greedy algorithm that maximizes marginal gain in
influence on every step.

Proposition 4.1. Let XInfMax
k denote the solution

of size k found by the algorithm that greedily maximizes
marginal gain in I(·) on every step, and let Pk denote
the solution found by levelwise skyline search. When

I(·) is submodular, we have2 XInfMax
k ∈ Pk.

Proof. Please see supplementary information.

2When multiple solutions with the same influence exist, the
greedy algorithm finds just one of those. Since it is cost-agnostic,
this may be one with higher cost than the one found by the skyline

algorithm, as is the case in Figure 1. Since the effect is negligible
in practice, we ignore this subtlety.



This implies that the (1−1/e) approximation that holds
for the solution found by the greedy algorithm [16] also
holds for the point of largest influence in Pk. Hence,
that part of the resulting skyline cannot be arbitrarily
bad when maximizing influence.

Of course we can also maximize the “bang for the
buck” using a greedy algorithm, as discussed in the
Introduction. This algorithm, which we call bftb,
adds at every step the item u that maximizes the ratio
I(X∪u)−I(X)

C(u) , where X is the current solution set. The

cost-influence skyline Pk that is found by the levelwise
method can dominate the solution found by bftb for k.

Proposition 4.2. Let Xbftb
k denote the solution of

size k found by the algorithm that greedily maximizes
I(X∪u)−I(X)

C(u) on every step, and let Pk denote the so-

lution found by levelwise skyline search. When I(·) is
submodular, there can exist some X ∈ Pk such that
X � Xbftb

k .

Proof. Please see supplementary information.

In practice we observe that the bftb solution tends to
belongs to the skyline, however.

5 The FAST-SKYLINE algorithm

We continue by introducing a levelwise algorithm that
exploits the linearity of C(·) as well as the submodular-
ity of I(·). These allow us to address the scalability is-
sues that the Levelwise approach suffers from.

1. Equation 4.1 requires to combine every item in V
with every subset in Pi−1. (Except those that are
already contained in a particular subset X.) The
set E(Pi−1) is thus of size O(|Pi−1||V |), which is
still linear in |V |, but in practice very large. Rather
than materializing the list L in Algorithm 1, we will
construct an iterator that will produce the list L in
increasing order of C(·). This is possible because
C(·) is linear.

2. Algorithm 1 computes I(X) for every X ∈ E(Pi−1).
This becomes prohibitively slow even if recently
proposed fast influence estimation algorithms (such
as [6, 18]) are used. The submodularity of I(·) allows
us to define an upper bound to I(X ∪u) that is very
fast to compute in comparison to the actual value
of I(X ∪ u). We will use this upper bound on skip
some of the X that will not satisfy the I(X) > Imax

condition on line 7 of Algorithm 1.

These improvements allow us to scale up the levelwise
search strategy to several orders of magnitude larger
inputs.

On a high level the proposed algorithm works as Al-
gorithm 1. It iterates over sets in E(Pi−1) in increasing

order of C(·), and adds the set X to Pi whenever I(X)
is greater than Imax. The main difference is in how the
set E(Pi−1) is accessed, and that I(X) is not computed
for all X.

5.1 Iterating over E(Pi−1) in increasing order
of C(X) Consider the sorted list L as defined in Algo-
rithm 1. Next we show how to generate L in sorted order
without first computing C(X) for every X ∈ E(Pi−1)
and then sorting the resulting list.

A first observation is that, for some fixed X ∈ Pi−1,
the set X∪u appears before the set X∪v in L if and only
if C(u) ≤ C(v). Therefore, we do not have to consider
the set X ∪v until all sets X ∪u with C(u) < C(v) have
been processed.

Let U denote a list of all vertices u ∈ V that is
sorted in increasing order of C(u), and denote by U [l]
the vertex at position l in this list. Moreover, let Xj

denote the the j:th set in the skyline Pi−1 for every
j = 1, . . . |Pi−1|. We associate to every Xj an index to
the list U , denoted posj . If there was only one subset
in Pi−1, denoted X1, we could iterate over the list L in
increasing order of cost simply by outputting the sets
X1 ∪ U [pos1] for pos1 = 1, . . . , |V | (and omitting those
u ∈ V that are already contained in X1).

When there is more than one subset Xj in Pi−1, the
next subset in L is always Xj ∪ U [posj ] for the j that
minimizes C(Xj ∪U [posj ]). To find this j in an efficient
manner, we maintain a (min) priority queue Q that
contains the sets Xj ∪U [posj ], for j = 1, . . . |Pi−1|, with
C(Xj ∪ U [posj ]) as the priority. (The lower the cost,
the higher the “priority”.) The queue Q is initialized
by letting posj = 1 for all j, and inserting the sets
Xj ∪ U [1]. When the set Xj ∪ U [posj ] is obtained from
the queue, we increment posj by one, and insert the new
Xj ∪ U [posj ] into the queue. The next subset of L is
always the one at the head of Q.

5.2 Upper bound for expected influence Even if
fast influence estimation algorithms are used, comput-
ing I(X) for every X ∈ E(Pi−1) is still a bottleneck.
A well-known optimization to the greedy algorithm [12]
makes use of submodularity to avoid computing I(X)
when X can not enter the current solution. In par-
ticular, the trick is to to find an upper bound on the
marginal gain Γ(X,u) = I(X ∪ u) − I(X) of u when
added to X. Recall that the greedy algorithm always
adds the u ∈ V \X that maximizes Γ(X,u). If this up-
per bound is lower than the current best marginal gain,
we know that u can not enter the solution.

We use a similar technique to prune unnecessary
evaluations of I(X) for a large part of the X ∈ E(Pi−1)
in our algorithm. Recall that Algorithm 1 keeps track



of Imax, the largest influence seen so far, and the set X
can enter Pi only if I(X) is larger than Imax. However,
if already the upper bound of Eq. 5.2 is lower than Imax,
we can skip computing I(X).

We assume I(·) to be submodular, thus Definition 1
implies that

(5.2) I(X ∪ u) ≤ I(X) + Γ(Y, u),

where Y ⊆ X. Since every set in E(Pi−1) is of the form
X ∪ u, where X ∈ Pi−1, and I(X) is known for every
X ∈ Pi−1, we can compute the upper bound by finding
the smallest known Γ(Y, u) where Y ⊆ X. We do this
by maintaining a marginal gain cache of all marginal
gains Γ(Y, u) that have been computed.

5.3 Marginal gain cache The marginal gain cache
is a data structure that represents (explicitly or im-
plicitly) a set of triplets (u, Y,Γ(Y, u)). It provides the
operations mgc-put(u, Y,Γ(Y, u)) and mgc-get(u,X).
The insert operation inserts the triplet (u, Y,Γ(Y, u))
into the cache. The retrieve operation is defined as
(5.3)
mgc-get(u,X) = min

(v,Y,Γ(Y,v))
{Γ(Y, u) | v = u ∧ Y ⊂ X},

where minimization is over all triplets in the cache.
Different implementations of the cache can be de-

vised. The only real requirement is that the cache per-
forms substantially faster than computing I(·). We use
a simple approach where the cache associates to every
u ∈ V a list of only those triplets that contain u. Insert-
ing is done by appending to this list, while mgc-get
scans the list and finds the triplet with the smallest
marginal gain Γ(Y, u) where Y ⊂ X.

5.4 Combining everything The final algorithm,
Fast-Skyline, is shown in Algorithm 2. To compute
the skyline at level k, we first compute the first level
skyline P1, e.g., using Algorithm 1, and then iterate
Fast-Skyline until the given k.

Alg. 2 takes Pi−1 as input and computes Pi. The
loop on lines 6–19 corresponds to the for loop on lines
5–9 of Algorithm 1. The if statement on line 10 queries
the marginal gain cache to check if Xj ∪u can enter the
solution. If yes, we compute the actual marginal gain
and insert this into the cache (lines 11–13). On lines
14–16 the algorithm determines if Xj ∪u enters the new
skyline. Finally, we update the queue Q on lines 17–19.
This part implements an additional optimization that
avoids inserting candidates into Q that we can prune
already at this point. That is, we keep incrementing
posj until we either reach the end of U , or we find a
case that has an upper bound above the current Imax.
This leads to a substantial speedup in practice, as we

Algorithm 2 Fast-Skyline(Pi−1)

1: Q← empty (min) priority queue
2: for j = 1 to |Pi−1| do
3: Xj ← j:th set in Pi−1

4: insert (j, 1) into Q with priority C(Xj ∪ U [1])
5: Pi ← ∅, Imax ← 0
6: while Q is not empty do
7: (j,posj)← queue-pop()
8: Xj ← j:th set in Pi−1

9: u← U [posj ]
10: if mgc-get(u,Xj) + I(Xj) > Imax then
11: inf ← I(Xj ∪ u)
12: gain ← inf −I(Xj)
13: mgc-put(u,Xj , gain)
14: if inf > Imax then
15: Imax ← inf
16: Pi ← Pi ∪ {Xj ∪ u}
17: increment posj until posj > |U | or

mgc-get(Uposj , Xj) + I(Xj) > Imax

18: if posj ≤ |U | then
19: insert (j,posj) into Q with

priority C(Xj ∪ U [posj ])
20: return Pi

can prune many of the points in E(Pi−1) from entering
the queue in the first place3.

5.5 Filtering intermediary skylines Finally, the
skylines have a lot of redundancy from a practical
point of view. Often adjacent points on the skyline
differ only by a very small amount in terms of C(·)
and I(·). Moreover, the size of Pk (in term of the
number of sets) tends to increase as k increases. As
the complexity discussion below shows, the size of Pi−1

plays an important part. We thus propose to use
simple filtering heuristics to reduce the size of Pi−1

before running Fast-Skyline. The one we use in the
experiments considers Pi−1 in increasing order of C(·),
and omits a setXj when the difference C(Xj)−C(Xj−1)
is below some threshold θ. This turns out to have a
substantial effect to the running time, and only a very
small effect to the resulting skyline.

5.6 A note on complexity We assume that man-
aging the priority queue, as well as the marginal gain
cache is orders of magnitude faster than evaluating I(·).
From a practical point of view, the relevant measure of
complexity4 is thus the number of calls to I(·).

3Some additional notes on optimizing the implementation can

be found in the supplementary information.
4We let Ω and O denote (not necessarily tight) lower and upper

bounds, respectively.



First, it is easy to observe that this number is
lower bounded by the size of Pi: we must compute the
influence of every set Xj ∪ u that enters Pi (line 11 of
Alg. 2). Second, in the absence of pruning (or if nothing
was pruned), we would call I(·) for every set in E(Pi−1).
We obtain thus:

Proposition 5.1. The number of times Fast-
Skyline (or any greedy levelwise algorithm) calls I(·)
is Ω(|Pi|) and O(|V ||Pi−1|).

In the experiments we will measure how close to this
lower bound the algorithm gets in practice. Note that
the Levelwise algorithm discussed in Section 4.2 will
make Ω(|V ||Pi−1|) calls to I(·). Even if Fast-Skyline
has the same worst-case performance, it can be up to
|V | times faster, assuming that Pi−1 and Pi are roughly
of the same size.

Finally, note that the size of the priority queue Q
can not be larger than |Pi−1|. This is because initially
Q contains |Pi−1| items, and at every iteration of the
while loop we pop one element from Q and insert at
most one new element into Q. Moreover, at least every
item in Pi must have passed through Q, and there are at
most |E(Pi−1)| = O(|V ||Pi−1|) items that can possibly
enter Q. This yields:

Proposition 5.2. The complexity of managing the
priority queue Q in Fast-Skyline is Ω(|Pi| log |Pi−1|)
and O(|E(Pi−1)| log |Pi−1|).

6 Experiments

We ran a number of experiments to compare Fast-
Skyline with Levelwise as well as the standard
greedy influence maximization algorithm. Our imple-
mentation of the greedy algorithm uses the optimiza-
tions (CELF) discussed in [12]. Moreover, to speed
up simulating the independent cascade model (comput-
ing I(X)), we use the technique described in [6] with
R = 200. In short, this avoids having to run a large
number of simulations for each X by using a precom-
puted database of reachable sets for every node u ∈ V .
Running times that we report do not include this pre-
processing, as we want to focus on algorithm perfor-
mance given an efficient method for computing I(X).
We also use filtering with θ = 1 whenever the size of
Pi−1 is larger than 200 points. These values were set
after some initial experimentation5, and in practice fil-
tering has negligible effect on the resulting skyline. In
all experiments, individual vertex costs were drawn uni-
formly at random from [5, 50]. All algorithms were im-

5Please see the supplementary information for a study of the
effect of the filtering heuristic.

running time (sec)

1000 2000 3000 4000 5000

10−2

10−1

100

101

102

number of vertices

LEVELWISE
FAST-SKYLINE

calls to I()

1000 2000 3000 4000 5000

102

103

104

105

106

number of vertices

Figure 3: Running time and number of calls to I(·)
for Levelwise and Fast-Skyline (log scale) on small
Barabasi-Albert graphs as a function of network size.

plemented6 in JavaScript, and the experiments were run
with Node.js7 (version 0.10.28) on a 2.8GHz Intel Xeon
CPU having 32GB RAM.

6.1 Comparison with LEVELWISE We start by
comparing Fast-Skyline with the Levelwise algo-
rithm originally proposed in [19], and briefly discussed
in Section 4.2. The main difference is that Level-
wise incorporates no pruning, and simply materializes
all of E(Pi−1) to compute Pi. We created small random
graphs using the Barabasi-Albert model [1], allocated
random costs to the vertices, and ran both algorithms
up to k = 5. Propagation probability was set to 0.1.

Figure 3 shows the results. We can observe that
Fast-Skyline is over two orders of magnitude faster
than Levelwise, and the difference increases even
further as the network grows. It is hardly surprising
that Levelwise is slower: the pruning really has a huge
effect on the number of calls to I(·). It is easy to see that
using Levelwise on networks with millions of vertices
is simply not possible, especially for larger values of k.

6.2 Running times on real networks We then
take a look at how Fast-Skyline performs on real
data. We use six publicly available networks from the
Stanford Large Network Dataset Collection8. Vertex
costs were assigned uniformly at random from [5, 50].
Their names and basic statistics are shown in Table 1.
The propagation probability of the independent cascade
model was set to a uniform value of p = 0.01 in all cases
(except p = 0.005 for soc-pokec). Table 1 also shows
the running times (in sec) of the proposed algorithm
with k = 50 (column fsl). As we can see, for small
networks the algorithm runs in a couple of minutes,

6http://anttiukkonen.com/skyline
7http://nodejs.org/
8http://snap.stanford.edu/data/



Table 1: Dataset statistics and results for k = 50: skyline size, running time, and pruning efficiency

running time calls to I(·) /|Pi|
Network |V | |E| |P50| fsl fsl/|P50| Greedy min median max

ca-HepTh 9.8K 52.0K 1572 1m31s <0.1s <1.0s 1.12 1.21 1.33
ca-CondMat 23.1K 186.9K 2047 3m17s <0.1s <1.0s 1.18 1.24 1.54
soc-Epinions1 75.9K 508.8K 2269 46m25s 1.2s 33.8s 2.99 4.47 14.32
com-dblp 317.1K 1.05M 2294 1h38m36s 2.5s 6.8s 1.02 1.05 1.30
amazon0601 403.4K 3.39M 646 15m30s 1.4s 8.9s 1.00 1.10 1.63
soc-pokec 1.63M 30.62M 3161 4h15m59s 4.9s 34.0s 1.01 1.02 1.25

running time (sec)

0 10 20 30 40 50
k

10−1

100

101

102

103

104

ca-HepTh
ca-CondMat
soc-Epinions1
com-dblp
amazon0601
soc-pokec

Figure 4: Running time (log scale) of Fast-Skyline as
a function of k on real networks.

while for medium-sized networks computing the skyline
takes about 1-2 hours. For the largest network (soc-
pokec) the algorithm needs a little over four hours.

While the greedy influence maximization algorithm
is orders of magnitude faster (column Greedy), it only
computes a single point for every k. Fast-Skyline pro-
duces a large set of Pareto optimal solutions, including
the solution found by the greedy algorithm. Table 1
also shows the running time of the skyline algorithm
divided by the number of points in the final solution
(columm fsl/|P50|), which shows that the time needed
per seed set is very competitive. Fast-Skyline thus
outperforms an approach based on scalarization where
the greedy algorithm is invoked several times to com-
pute P50 one set at a time.

It is also interesting to see how the running time
of Fast-Skyline behaves as a function of k. This is
shown in Figure 4 for all networks up to k = 50. We
can observe that as k grows the current implementation
becomes progressively slower. For small k the algorithm
finds Pk easily in less than 1000 seconds in all cases
except again the largest network (soc-pokec).

6.3 Pruning efficiency on real networks Next,
we consider the efficiency of our pruning strategy. Recall

that the main objective is to reduce the number of calls
to I(·), as that is the main bottleneck of the Levelwise
method. According to Proposition 5.1, any greedy
levelwise algorithm that computes Pi from Pi−1 must
make at least |Pi| calls to I(·). The pruning techniques
will never be perfect, but it is interesting to see how close
we get to this lower bound. We recorded the number
of times Fast-Skyline calls I(·) on every level i, and
divided this by the size of Pi, for i = 2 up to k. Results
are shown in the rightmost columns of Table 1.

We can see that for every network, except soc-
Epinions1, the maximum ratio observed is less than
2 for every i up to k, and the medians are very close
to 1. This means that the pruning strategy of Fast-
Skyline is nearly optimal. An even better pruning
strategy would not lead to substantial speedups in most
cases. The fact that the algorithm has problems with
soc-Epinions1 is an interesting finding as well, as it
suggests that there are inputs for which the mechanism
is suboptimal.

6.4 Examples of cost-influence skylines Figure 5
shows examples of global skylines we found with k ≤
50. The plots also show the consecutive solutions
found by the greedy influence maximization algorithm
(InfMax), as well as the greedy bang-for-the-buck
(bftb) algorithm. We can see that for a given k, the
cost-influence skyline contains a wide range of solutions
that lie between the bftb and InfMax solutions. All
of these seed sets have higher influence than the bftb
solution, and a lower cost than the InfMax solution.

7 Conclusions

We introduced the concept of cost-influence skylines and
presented an efficient and effective heuristic algorithm
for finding them. The algorithm always finds the so-
lution that the standard greedy influence maximization
algorithm finds and in practice also finds the bftb solu-
tion, but it discovers many alternative solutions as well.
The experiments show that such skylines can be dis-
covered for fairly large social networks in a reasonable
amount of time. Furthermore, we have shown that the



ca-HepTh

0 500 1000 1500
0

5

10

15

20

25

cost

skyline
INFMAX
BFTB

ca-CondMat

0 200 400 600 800 1000
0

20

40

60

cost

skyline
INFMAX
BFTB

soc-pokec

0 500 1000 1500
0

100
200
300
400
500

cost

skyline
INFMAX
BFTB

Figure 5: Global cost-influence skylines for three datasets (k ≤ 50), computed with Fast-Skyline (solid black
line). Also shown are the consecutive solutions found by a greedy influence maximizing algorithm (red circles),
as well as a greedy bang-for-the-buck maximizing algorithm (green circles).

proposed pruning technique is often nearly optimal.
Observe that Algorithm 2 can be applied to any

set selection problem where a sum must be minimized
and a submodular function must be maximized. In this
paper we showcased seed selection for viral marketing
as an interesting application. Other possible use cases
include sensor placement problems [12] (some locations
can be more expensive than others due to environmental
conditions) or conservation planning [17] (it may be
useful to consider the trade-off between the costs to
conserve an area and species persistence probability).
In general, the problem of computing all Pareto optimal
solutions in the context of multi-objective combinatorial
optimization is an interesting topic for future work.

Acknowledgements Matthijs van Leeuwen is sup-
ported by a Postdoctoral Fellowship of the Research
Foundation Flanders (fwo).

References

[1] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[2] F. Bonchi. Influence propagation in social networks: A
data mining perspective. IEEE Intelligent Informatics
Bulletin, 12(1):8–16, 2011.

[3] C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier.
Maximizing social influence in nearly optimal time. In
SODA, pages 946–957, 2014.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[5] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-
scale social networks. In KDD, pages 1029–1038, 2010.

[6] S. Cheng, H. Shen, J. Huang, G. Zhang, and
X. Cheng. StaticGreedy: solving the scalability-
accuracy dilemma in influence maximization. In
CIKM, pages 509–518, 2013.

[7] M. Ehrgott and X. Gandibleux. A survey and annoted
bibliography of multiobjective combinatorial optimiza-
tion. OR Spektrum, 2000.

[8] M. Ehrgott and X. Gandibleux. Approximative so-
lution methods for multiobjective combinatorial op-
timization. TOP: Journal of the Spanish Society of
Statistics and Operations Research, 12(1):1–63, 2004.

[9] A. Goyal, F. Bonchi, L. V. S. Lakshmanan, and
S. Venkatasubramanian. On minimizing budget and
time in influence propagation over social networks.
Social Netw. Analys. Mining, 3(2):179–192, 2013.

[10] A. Goyal, W. Lu, and L. V. S. Lakshmanan. Celf++:
optimizing the greedy algorithm for influence maxi-
mization in social networks. In WWW (Companion
Volume), pages 47–48, 2011.

[11] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximiz-
ing the spread of influence through a social network.
In KDD, pages 137–146, 2003.

[12] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. M. VanBriesen, and N. S. Glance. Cost-effective
outbreak detection in networks. In KDD, pages 420–
429, 2007.

[13] W. Lu, F. Bonchi, A. Goyal, and L. V. S. Lakshmanan.
The bang for the buck: fair competitive viral marketing
from the host perspective. In KDD, pages 928–936,
2013.

[14] W. Lu and L. V. S. Lakshmanan. Profit maximization
over social networks. In ICDM, pages 479–488, 2012.

[15] H. Markowitz. Portfolio selection. The Journal of
Finance, 7(1):77–91, 1952.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functionsi. Mathematical Programming, 14(1):265–
294, 1978.

[17] D. Sheldon, B. N. Dilkina, A. N. Elmachtoub, R. Fin-
seth, A. Sabharwal, J. Conrad, C. P. Gomes, D. B.
Shmoys, W. Allen, O. Amundsen, and W. Vaughan.
Maximizing the spread of cascades using network de-
sign. In UAI, pages 517–526, 2010.

[18] Y. Tang, X. Xiao, and Y. Shi. Influence maximiza-
tion: Near-optimal time complexity meets practical ef-
ficiency. In SIGMOD, 2014.

[19] M. van Leeuwen and A. Ukkonen. Discovering skylines
of subgroup sets. In ECML/PKDD (3), pages 272–287,
2013.



Same bang, fewer bucks: efficient discovery of the cost-influence skyline

Supplementary Information

Matthijs van Leeuwen∗ Antti Ukkonen†

1 Proofs of propositions

Proof. (of Proposition 4.1) Let Xi = XInfMax
i for

short. First, observe that X1 ∈ P1. This is because
the greedy algorithm maximizes marginal gain, and no
point on P1 can dominate this, no matter what the costs
are. Next, suppose we have Xi−1 ∈ Pi−1. Since Xi is
obtained from Xi−1 by adding that u that maximizes
marginal gain in I(·), no point on Pi can dominate Xi.
This is because for some X ′ ∈ Pi to dominate Xi, there
would have to have been some set in Pi−1, such that
when some item u′ is added to this set, the marginal gain
is larger than the one found by greedy when forming
Xi. Because for a submodular I(·) the marginal gains
are decreasing, such a u′ can not exist. If it existed, the
greedy algorithm would have added u′ at some earlier
point. �

Proof. (of Proposition 4.2) We provide an example
that shows that there can exist some X ∈ Pk that
dominatesXbftb

k . Suppose we have only three vertices,
A, B, and C, with the costs and influences as shown in
Table 1, and let k = 2. Observe first that the influence
function is indeed submodular, and that the costs are
linear. The greedy bftb algorithm would first choose
B, and then the set BC in the second iteration, as these
maximize the bang-for-the-buck ratio. However, the
levelwise skyline algorithm would first find that P1 =
{A,B,C}, and then extend this to P2 = {AB,AC}.
However, the set AC clearly dominates the set BC as
it has both lower cost and higher influence.

2 Additional speedups to FAST-SKYLINE

Below we discuss a number of implementation details
that are relatively simple but nonetheless useful in
practice.

2.1 Implementing the marginal gain cache In
our implementation the marginal gain cache is a col-

∗Machine Learning, Department of Computer Science, KU

Leuven,Leuven, Belgium matthijs.vanleeuwen@cs.kuleuven.be.
†Helsinki Institute for Information Technology HIIT, Aalto

University, Finland.

Table 1: Example costs and influences for Proof of
proposition 4.2

set Cost Influence
A 1 2
B 2 5
C 3 6.5

AB 3 5.5
AC 4 8.33
BC 5 8

lection of lists indexed by vertex id. For every u ∈ V
we have a list Ru of triplets of marginal gains of u for
different subsets Y . We scan over Ru until we find a
case where the resulting upper bound Γ(Y, u) + I(X) is
less than Imax, as this is enough to prune Xj ∪ u from
consideration. If no such case is found, we return the
smallest valid Γ(Y, u) found in Ru.

2.2 Managing the priority queue The queue-
push procedure implements an additional optimization
that avoids inserting candidates into Q that we can
prune already at that point. That is, we keep incre-
menting posj until we either reach the end of U , or we
find a case that has a upper bound above the current
Imax. Notice that when the candidate is popped from
Q, the value of Imax might have increased, and we have
to check the upper bound again. This leads to a sub-
stantial speedup in practice as we can prune many of
the points in E(Pi−1) from entering the queue in the
first place.

2.3 More speedups We mention some further im-
plementation details that help making the algorithm run
faster in practice.

1. The algorithm will generate duplicate sets. To
avoid these, we conduct an additional check after
line 10 of the main algorithm to find out if the
resulting set Xj ∪ u has already been processed.
In practice we do this by checking if the freshly
popped set is equal to the set that was processed
immediately before.



Algorithm 1 Details of subroutines used in Fast-
Skyline

1: procedure mgc-get(u,X):
2: R←Mu

3: for i = 1 to |R| do
4: (u, Y,Γ(Y, u))← Ri

5: if Y ⊂ X and Γ(Y, u) + I(X) < Imax then
6: return Γ(Y, u)
7: return smallest Γ(Y, u) found in Ru with Y ⊂ X

1: procedure queue-push(j):
2: repeat
3: posj ← posj +1
4: until posj = |U | or mgc-get(Uposj , Xj)+I(Xj) >
Imax

5: if posj < |U | then
6: insert (j,posj) into Q with priority C(Xj ∪Uposj )

2. In mgc-get, often an item can be pruned with-
out scanning over Rj , but simply by checking if
Γ(∅, u) + I(X) < Imax. That is, for many vertices
even the marginal gain that results from adding u
to the empty set is enough to prune u when Imax

has grown sufficiently large.

3 Effect of the filtering heuristic

We make a note about the effect the filtering heuristic
has on the running time, as well as on the resulting
skyline. Prior to calling Fast-Skyline given Pi−1,
we prune Pi−1 by discarding points as described in
the main manuscript. We set the parameter θ = 1,
meaning the resulting skylines will have a resolution of
1 unit of cost. As the reason for applying the filter is
to reduce redundancy as the size of the skyline grows,
we only apply the filter when the size of Pi−1 is above
some threshold. In the following experiment we used
the thresholds 100 and 200 (denoted by f100 and f200
below); in all other experiments we used 200 as default
threshold.

Figure 1 shows the unfiltered skyline, as well as
the filtered ones for soc-Epinions1 and ca-CondMat.
The plots on the left show the entire skyline, while
on the right we zoom into a small region indicated
by the dashed rectangle in the left figures. We can
observe that the curves for f100 and f200 overlap almost
perfectly with the solid black line (no filtering). The
small differences that are present appear in the low-cost
parts of the skylines, as indicated by the detail plots on
the right. The quality of the resulting skylines is hardly
affected by applying filtering, and unlikely to make a
noticeable difference in practice.

200 400 600 800 1000

0
10
0

30
0

50
0

cost

in
flu
en
ce

soc-Epinions1, full

200 220 240 26015
0

25
0

35
0

cost

in
flu
en
ce

soc-Epinions1, zoomed

none
f100
f200

200 400 600 800 1000

0
10

20
30

40
50

60

cost

in
flu
en
ce

ca-CondMat, full

200 220 240 260

5
10

20
30

40

cost

in
flu
en
ce

ca-CondMat, zoomed

none
f100
f200

Figure 1: Effect of filtering the skyline Pi−1 prior to
calling Fast-Skyline. Black curve shows the unfiltered
skyline, while the other lines show filtered ones. Figures
on the left show the entire skyline, while figures on the
right zoom in on the region indicated by the dashed
rectangle.

Table 2: Effect of skyline filtering (with k = 40)

Network filter time (sec) Pk

ca-HepTh none 105 2,612
f100 29 1,191
f200 29 1,218

ca-CondMat none 612 4,795
f100 69 1,517
f200 71 1,573

soc-Epinions1 none 7,684 11,128
f100 1,640 1,648
f200 1,655 1,654



Table 2 shows both running time (with k = 40)
and the size of P40 for some of our smaller datasets,
either without filtering or with one of the two thresholds
are applied.1 We can observe that filtering leads to a
substantial reduction in running time, no matter what
the number of vertices is. The resulting skylines are
obviously substantially smaller.

Note that with filtering, it cannot be guaranteed
that the discovered skyline contains exactly the solution
found by the greedy InfMax algorithm. In practice,
however, the skyline contains at least solutions that are
virtually identical in terms of both cost and influence
even with (modest) filtering.

1The values are computed with a different random allocation

of vertex costs, hence the small differences to Table 1 in the article
itself.


