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Abstract. Although subgroup discovery aims to be a practical tool for
exploratory data mining, its wider adoption is hampered by redundancy
and the re-discovery of common knowledge. This can be remedied by
parameter tuning and manual result filtering, but this requires consid-
erable effort from the data analyst. In this paper we argue that it is
essential to involve the user in the discovery process to solve these is-
sues. To this end, we propose an interactive algorithm that allows a user
to provide feedback during search, so that it is steered towards more in-
teresting subgroups. Specifically, the algorithm exploits user feedback to
guide a diverse beam search. The empirical evaluation and a case study
demonstrate that uninteresting subgroups can be effectively eliminated
from the results, and that the overall effort required to obtain interesting
and diverse subgroup sets is reduced. This confirms that within-search
interactivity can be useful for data analysis.
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1 Introduction

Informally, subgroup discovery [12,18] is concerned with finding subsets of a
dataset that have a substantial deviation in a property of interest when com-
pared to the entire dataset. It can be regarded as an exploratory data analysis
task, with a strong emphasis on obtaining comprehensible patterns in the form
of subgroup descriptions. In the context of a bank providing loans, for example,
we could find that 16% of all loans with purpose = used car are not repaid,
whereas for the entire population the proportion is only 5%. Subgroup discov-
ery algorithms can cope with a wide range of data types, from simple binary
data to numerical attributes and structured data. Various quality measures have
been proposed to quantify subgroup interestingness, for which generally both the
amount of deviation and the size of the subset are taken into account.
Subgroup discovery aims to be a practical tool for data exploration, and many
case studies on real-world applications have been performed; see Herrera et al.
[11] for a recent overview. Unfortunately, obtaining interesting results is usually a
time-consuming job for which expertise on subgroup discovery is required. This is
due to two main reasons: 1) large amounts of subgroups are found, of which many
are redundant, and 2) background knowledge of the domain expert is not taken



into account. To remedy these issues, careful tuning of the algorithm parameters
and manual filtering of the results is a necessity. This requires considerable effort
and expertise from the data analyst, and this clearly hampers the wider adoption
of subgroup discovery as a tool for data exploration.

To address the pattern explosion in subgroup discovery, Diverse Subgroup
Set Discovery (DSSD) [14] was recently proposed in an attempt to attain diverse
rather than redundant subgroup sets. The main idea is to integrate pattern set
mining into a levelwise search, so that diversity is maintained throughout search.
Specifically, heuristic methods for selecting diverse subgroup sets are used to
select a beam on each level, resulting in a diverse beam search.

Case Study: Sports Analytics To illustrate the problems of existing methods
and the potential of our proposed approach, we investigate the use of subgroup
discovery in the context of sports analytics. There has recently been a signifi-
cant interest in data mining in the professional sports community®. ‘Black box’
approaches that do not explain their outcomes would never be accepted, but
subgroup discovery has the advantage that its results are interpretable.

The case study concerns a dataset containing information about games played
by the Portland Trail Blazers in the 2011/12 season of the NBAZ. Each tuple
corresponds to a segment of a game played by the same group of 10 players
(including 5 players on the opposing team). The attributes include 18 binary
variables indicating presence of a particular player on the court, a nominal vari-
able representing the opposing team, a numeric attribute pace3, and 3 binary
variables per team indicating whether offensive rating? and offensive/defensive
rebound rates® of a team are higher than the season average.

We select offensive rating as the target property of interest, and the com-
monly used Weighted Relative Accuracy as the quality measure (see Section 5
for further details). This means that high-quality subgroups represent common
situations in which the team is likely to have a high offensive rating, described
in terms of players, opponents, and the course of the game.

To assess whether Diverse Subgroup Set Discovery gives satisfactory results,
we ran the algorithm on the NBA data with default settings (cover-based heuris-
tic with default quality-diversity trade-off [14]). We asked for the discovery of
five subgroups, which are all shown in Table 1. The results suffer from two severe
problems: 1) the results are clearly redundant, i.e. diversity could not be attained
with the default parameter settings, and 2) none of the discovered subgroups is
interesting to a domain expert, as the descriptions contain no surprising and/or
actionable information. For example, it is a trivial fact for experts that poor
defensive rebounding by an opponent (opp_def_reb = F') eases the task of scor-

! See for example http://www.sloansportsconference.com/.

2 Data source: http://basketballvalue.com/downloads.php.

3 Pace captures the speed of the game and is indicative of the team’s playing style.

4 Offensive rating is computed as the average number of points per shot.

5 Rebound rate estimates how effective a team is at gaining possession of the ball after
a missed shot, either by an opponent or by one of its own players.



Table 1. Five subgroups discovered by Diverse Subgroup Set Discovery [14]; cover-
based approach with default quality-diversity trade-off. For each discovered subgroup
its description, size and quality are given.

Description Size Quality
opp-def_reb = F N opponent # ATL A thabeet = F 219 0.0692
opp_def _reb = F N opponent # ATL 222 0.0689

opp-def_reb = F A opponent # ATL N ajohnson = F 222 0.0689
opp-def_reb = F N thabeet = F N opponent # PHI 225 0.0685
opp_def _reb = F A opponent # PHI 228 0.0682

ing, whereas absence of reserve players (thabeet and ajohnson) is not useful for
decision making either.

Aims and Contributions We argue that it is essential to actively involve the
user in the discovery process to ensure diverse and interesting results. Even when
diversity can be obtained through a fully automated discovery process, on itself
this is not sufficient to guarantee interesting results. The main reason is that the
user’s background knowledge and goals are completely ignored. Some existing
algorithms that try to leverage expert knowledge require specifying it in advance,
but this is a hard task and may therefore be barely less time-consuming than
post-processing humongous result sets.

We propose an interactive subgroup discovery algorithm that allows a user
to provide feedback with respect to provisional results and steer the search away
from regions that she finds uninteresting, towards more promising ones. The
intuition behind our approach is that the ‘best’ subgroups often correspond
to common knowledge, which is usually uninteresting. Users expect to obtain
novel, unexpected insights, and therefore our system is designed to eliminate
such uninteresting subgroups already during search.

The Interactive Diverse Subgroup Discovery (IDSD) framework that we pro-
pose builds upon DSSD by re-using the diverse beam search. However, we aug-
ment it by making the beam selection interactive: on each level of the search,
users are allowed to influence the beam by liking and disliking subgroups. One
of two subgroup similarity measures is then used to generalise this feedback to
all subgroups for a specific level, by re-weighing qualities. The adjusted quality
measure affects the (diverse) beam selection and hence the search can be guided.

Since it is hard to evaluate interactive data mining methods, we perform two
types of evaluations. First, we perform an extensive quantitative evaluation in
which user feedback is emulated. For this we treat a set of high-quality subgroups
as ‘background knowledge’ in which the user is not interested, based on which
we emulate the user feedback. The purpose of these experiments is to show that
undesired results can be effectively avoided, which in return leaves space for
novel, potentially more interesting results.

Second, we turn back to the case study that we introduced in this section. We
asked a domain expert to use our interactive discovery system, and he success-



fully found more interesting patterns than with the standard diverse approach.
This confirms that human-computer interaction makes it possible to discover
interesting subgroups with much less effort than using standard algorithms.

2 Related Work

Subgroup discovery can be seen as an instance of supervised descriptive rule
discovery [13], like contrast set mining [3] and emerging pattern mining [5]. Apart
from DSSD, which was inspired by pattern set mining, several local approaches
to redundancy elimination have been proposed: closed sets for labeled data [9]
applies only to binary targets, a recent approach uses quadratic programming
to do feature selection prior to the discovery process [15].

The importance of taking user knowledge and goals into account was first em-
phasised by Tuzhilin [17]. More recently De Bie argued that traditional objective
quality measures are of limited practical use and proposed a general framework
that models background knowledge as a Mazimum Entropy distribution [4].

Applications of subgroup discovery in various domains often involve itera-
tive refinement of results based on feedback of experts, e.g. in medicine [7,8].
A classification of background knowledge relevant to subgroup discovery was de-
veloped [1], and some of the insights were used in the VIKAMINE tool, which
enables knowledge transfer between otherwise independent search sessions [2].
SVMs were applied to learn subgroup rankings from user feedback [16], but the
feedback phase was not integrated into search.

Outside subgroup discovery, ideas regarding interactive search have been
explored in Redescription Mining [6], but we go much further with the influence
of users on beam selection. Finally, MIME is an interactive tool that allows a
user to explore itemsets using traditional interestingness measures [10].

3 Preliminaries

We consider datasets that are bags of tuples. Let A = {A4y,..., 4;_1, A;} denote
a set of attributes, where each attribute A; has a domain of possible values
Dom(A;). Then a dataset D = {z1,...,2,} C Dom(A4;) x ... x Dom(4;) is
a bag of tuples over A. The attribute A; is a binary target attribute, i.e. the
property of interest. Attributes D = {A;,..., A;_1} are description attributes.

The central concept is the subgroup, which consists of a description and a
corresponding cover. In this paper, a subgroup description d is a conjunction of
boolean expressions over D, e.g. D1 =a A Dy > 0. A subgroup cover G is a bag
of tuples that satisfy the predicate defined by d: Gg ={vVt € D:t € G & d(t) =
true}, the size of the cover |G| is also called subgroup coverage.

Subgroup quality measures generally balance the degree of deviation and the
size of a subgroup. We use Weighted Relative accuracy, given by ow racec(G) =
G|
|D|
(resp. D). The previous allows us to define top-k subgroup discovery:

x (19 =1P), where 1€ (resp. 1?) is the proportion of positive examples in G



Problem 1 (Top-k Subgroup Discovery). Given a dataset D, a quality measure
v, and integer k, find the k top-ranking subgroups with respect to .

Bottom-up search is usually applied to solve this problem. The search space
consists of all possible descriptions and is traversed from short to long descrip-
tions. Common parameters to restrict the search space are a minimum coverage
threshold (mincov), and a maximum depth (maxdepth). Either exhaustive search
or beam search can be used, where the latter has the advantage that it is also
feasible on larger problem instances. It explores the search space in a levelwise
manner, and at each level only the w highest ranking candidates with respect
to ¢ (the beam) are selected for further refinement, where beam width w is a
user-supplied parameter. This makes it ideal for our current purposes.

Diverse Subgroup Set Discovery We recently introduced the DSSD frame-
work [14], which uses heuristic pattern set selection to select a more diverse beam
on each level of beam search. The purpose of this approach is to achieve globally
less redundant and therefore more interesting results.

The diverse beam selection strategies add a candidate subgroup to the beam
only if it is sufficiently different from already selected subgroups. In this paper
we use description-based beam selection because preliminary experiments showed
that it works well for our purposes; our prototype discovery system primarily
presents subgroup descriptions to the user. It first sorts all candidates descending
by quality and initialises beam = (), then iteratively considers each subgroup in
order until |beam| = w, and selects it only if there is no subgroup in the (partial)
beam that has equal quality and the same conditions except for one.

We use cover redundancy (CR) to quantify redundancy of a subgroup set,
1 c(t —¢
ie. CR(G) = D Z M, where G is a set of subgroups, ¢(t,G) is the
¢
teD

cover count of a transaction, i.e. the number of subgroups in G that cover ¢, and
¢ is the average cover count over all t € D. Essentially, it measures the deviation
of the cover counts from the uniform distribution. Although absolute values are
not very meaningful, CR is useful when comparing subgroup sets of similar size
for the same dataset: a lower CR indicates that fewer tuples are covered by more
subgroups than expected, therefore the subgroup set must be more diverse.

4 Interactive Diverse Subgroup Discovery

We now present the Interactive Diverse Subgroup Discovery (IDSD) algorithm,
which employs user feedback to guide a beam search. Main design goals are to
develop 1) a simple interaction mechanism that 2) requires little user effort. We
rely on two observations to achieve these goals. First, it is easier for a user to
assess patterns rather than individual transactions or attributes. Second, it is
possible to generalise user feedback using similarities between subgroups.

To involve the user already during the discovery process, the central idea is
to alternate between mining and user interaction: the algorithm mines a set of
patterns, a user is given the opportunity to provide feedback, the feedback is
used to steer the search, and the algorithm mines a new set of patterns.



Algorithm 1 Interactive Diverse Subgroup Discovery (IDSD)

Input: Dataset D; beam selection S; subgroup similarity o; mincov, w, maxdepth
Output: Set of k subgroups R

1: beam < {0}, I < 0, R <+ 0, depth + 1

2: repeat > Generate all candidates for this level
3: cands = {c € Exztensions(beam) | Coverage(c, D) > mincovA
—3n € g : IsExtension(c,n)}
4: beam <+
5: repeat > Selection and interaction loop
6: beam < Select Beam(S, cands, ¢, w, beam)
7 I < I U GetFeedback(beam)
8: R+ RU Ios
9: beam < beam \ Ineg, cands < cands \ Ineq
10: until |beam| = w > No patterns were disliked
11: for all ¢ € cands do
12: UpdateTopK (R, k x 100, ¢, ¢ (c, I, o))

13: depth < depth + 1
14: until depth > maxdepth
15: return Select Beam(S, R, @', k,0) U Ipos > Selection from large overall top-k

As a levelwise search procedure that takes only a limited number of interme-
diate solutions to the next level, beam search provides an excellent framework to
implement this high-level procedure. That is, on each level we let the user influ-
ence the beam by liking and disliking subgroups. Patterns that are disliked are
immediately removed from the beam and replaced by others, effectively guiding
search away from those apparently uninteresting branches of the search space.

This approach has the advantage that it is relatively easy to evaluate sub-
groups with short descriptions at early levels, while this has a strong influence
on search. Providing feedback at later levels allows fine-tuning, and search pa-
rameters such as maxdepth and w allow a user to manage her efforts.

Algorithm Details Algorithm 1 presents the method that we propose. In the
following we focus on how the DSSD diverse beam search, as briefly explained in
the Preliminaries, is modified to incorporate user feedback. The main difference
with respect to DSSD is that user feedback is used to re-weigh the qualities of all
possible patterns, effectively re-ranking patterns according to the user’s interest.

Feedback elicitation — Feedback elicitation is performed on line 7, after a
beam has been selected (line 6, see also below). All w selected subgroups are
presented to the user in a GUI, and she can provide feedback before continuing.

As feedback, the user can mark each subgroup in a beam as interesting (‘like’)
or uninteresting (‘dislike’). Let Ipos (resp. Ineq) denote the set of all positively
(resp. negatively) evaluated subgroups. Additionally, let I = 55 U I,,¢q be the
set of all evaluated subgroups. Note that a user is not obliged to provide any
feedback, hence I might not include all subgroups that are in the current beam
and it might even be empty. In the latter case the resulting search is equal to
that of (non-interactive) DSSD.



If any subgroups are disliked in this phase, they are removed from the beam
(line 9) and lines 5-9 are repeated until a complete beam consisting of w sub-
groups is obtained.

Candidate generation — On each level, initially all direct extensions of all sub-
groups in the current beam are generated as candidates (line 3). Here, a direct
extension is a subgroup description augmented with one additional condition.
Subgroups with too small coverage and all direct extensions of negatively evalu-
ated subgroups in I,z are removed. Note that this does not necessarily result in
the complete pruning of the corresponding branch in the search tree. Consider
the following example: AA BAC may be generated as extension of BAC, even if
A was disliked and thus added to I, at depth-1. This preserves the capability
to discover high-quality subgroups via other branches.

Feedback-driven subgroup selection — Since feedback only concerns individual
subgroups, we need to generalise it to the complete candidate set. We achieve
this through modification of the qualities of all subgroups in cands: starting from
the ‘prior’ given by ¢, the qualities are updated according to how similar they
are to the evaluated subgroups. This way, we obtain a quality measure ¢’ that
takes user feedback into account and effectively re-ranks all possible subgroups.
Subsequently, we use the regular diverse beam selection strategy on line 6, with
the only difference that the modified qualities are used.

For this to work we need a notion of subgroup similarity: subgroups that are
similar to interesting subgroups get a higher quality, whereas subgroups that are
similar to uninteresting subgroups get a lower quality. Let ¢ € cands and ¢ € I,
and let d, resp. G, denote the description resp. cover of a subgroup x. We use
the following two subgroup similarity measures:

. |dcﬂdi‘ . |GcﬂG2|
escription\Cy V) = 7777 1 Ocover\C, 1) = 1
0d pt (C Z) |d(»Ud7|71 g (C Z) ‘Gc‘ ( )

Description similarity is almost equal to Jaccard similarity; —1 is added to the
denominator so that a subgroup and any of its direct extensions have maximal
similarity of 1. Cover similarity is based on the overlap coefficient and has the
same property for direct extensions.

Finally, given a subgroup similarity measure o, the modified subgroup quality
measure ¢’ that takes user feedback into account is defined as:

T+ e o(G,i

neg

(@)

It re-weighs the ‘base quality’ ¢ with a factor based on similarity to evaluated
subgroups in I. Note that ¢’ is equivalent to ¢ when I = @. Also, values of ¢’
change immediately after each round of feedback elicitation, hence feedback has
an immediate effect on (incremental) beam selection.

Overall results — During search a large overall ‘top-%’ is maintained using the
re-weighed quality measure ¢’ (line 12). At the end of the algorithm (line 15),
a set of k subgroups is selected from this overall large top-k using the subgroup
selection procedure just described. Note that all positively evaluated subgroups
are added to this final result set R regardless of their qualities.



5 Experiments

5.1 Quantitative Evaluation

In order to be able to perform a large series of experiments, we emulate user
feedback. We select a set of high-quality subgroups BK that serves as background
knowledge; subgroups in BK are already known and should therefore be avoided
as much as possible. The intuition behind this approach echoes the example
in Section 1: top subgroups usually correspond to common knowledge and are
therefore uninteresting.

BK is selected from the output of a standard subgroup discovery algorithm.
Selection depends on the subgroup similarity measure used: when using descrip-
tion similarity, we iteratively select the highest quality subgroup having a de-
scription with < 3 conditions that does not overlap with the description of any
previously selected subgroup; for cover similarity, we only select the highest qual-
ity subgroup. During search, BK is used to emulate evaluations: any subgroup
s in the beam for which 3b € BK : o(s,b) > § is automatically ‘disliked’ by
adding it to I,ce. Parameter 3 allows varying the amount of evaluated subgroups:
larger values result in fewer negative judgements. Note that no positive feedback
is emulated.

To evaluate the effectiveness of the algorithm in eliminating undesired con-
ditions or tuples from the results, we compute the overlap of the discovered sub-
groups with elements of BK . Depending on the subgroup similarity measure, this
is either overlapgesc(s, BK) = maxpepx |ds N dp| or overlapeo, (s, BK = {b}) =
|Gs N Gy|. We report the average overlap for all subgroups included in result set
R, i.e. overlap(R, BK) = ﬁ X Y seroverlap(s, BK).

Dataset properties are listed
in Table 2, together with size, Table 2. Datasets and background knowledge
average description length, Desc.BK  Cov.BK
and coverage of the gener- DA
ated background knowledge. |BE| |dpx| |Gpr|
Except for nba, which was in-  breast-w [bw] 683 11 2 20 137

troduced in Section 1, all were  credit-a [ca] 653 17 3 30 325
taken from the UCI reposi-  credit-g [cg] 1000 22 2 30 394
tory®. The datasets were pre-  diabetes [db] 768 10 2 3.0 82
processed as follows: transac-  liver [lv] 345 8 2 3.0 107
tions with missing values were  nba 923 26 6 28 228

removed, and all numeric at-
tributes were discretised into 6 bins using equal-width binning.

Search parameters were set to the following values in all experiments: mincov =
0.1 x |D|, mazdepth = 5, w = 20, k = 100. Note that small values of w and
k are chosen in order to match the limited processing capabilities of a human
user. We first focus on a single dataset, credit-g, and then discuss the results of
experiments with multiple datasets.

S http://archive.ics.uci.edu/ml/datasets.html



Fig. 1. IDSD results for credit-g, with description subgroup similarity and emulated
user feedback. A lower feedback threshold S results in more negative feedback; the
N/A-setting corresponds to the non-interactive algorithm (i.e. no feedback emulated).
The subgroup quality plot depicts averages, standard deviations and maxima of the
individual (unweighed) qualities in the subgroup sets found.
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A Characteristic Experiment in Detail Figure 1 shows the results that
we obtained on credit-g for various values of 8, which controls the amount of
emulated negative feedback. Also, we experimented with both standard and
(description-based) diverse beam search. The left plot shows that the average
overlap with BK decreases considerably when 8 decreases and thus more sub-
groups are evaluated negatively. This demonstrates that re-weighing subgroup
quality using description-based similarity is effective at eliminating undesired
conditions from the beam and final results. Only modest numbers of negative
evaluations (8 to 12) were required to achieve this.

The middle plot shows that both maximum and average qualities of the sub-
group sets decrease. This is as expected though: the user emulation scheme was
designed to prune high-quality subgroups. Nevertheless, the algorithm succeeds
in discovering (other) subgroups of quite high quality. Finally, the right plot
shows that redundancy slightly decreases as I grows. Although the differences
between the standard and diverse beam search appear to be small, the diverse
results are clearly less redundant: in particular for lower 3, cover redundancy is
lower and standard deviation of the subgroup qualities is higher.

Overall Results For the experiments in Table 3 we use diverse beam selection,
with either description (8 = 0.35) or cover (5 = 0.5) subgroup similarity.

In general, both approaches adequately eliminate undesired subgroups from
the result set, whether it is through negatively marked conditions or tuples. This
is demonstrated by the consistently decreasing overlap with the background
knowledge. Importantly, the number of evaluations required to achieve this is
generally modest, i.e. |I| < 25 for all cases except two. This makes the approach
practically useful and usable for a domain expert. As expected, average and
maximum subgroup qualities decreases. Only the effect on cover redundancy
varies depending on the dataset, but the difference is often small. We conclude
that interaction and quality re-weighing work well together with the diverse
beam selection.



Table 3. Overall results using feedback emulation and description or cover subgroup
similarity measure, with and without interaction (after/before the —). |I| is the num-
ber of emulated dislikes. For each obtained subgroup set are shown: overlap with back-
ground knowledge, average and maximum quality, and cover redundancy.

Standard diverse — Interactive
Avg.overlap(BK) Pavg Pmaz CR

bw 8 1.37 = 0.80 187 — 171 200 — .184 1.20 — 1.26
ca 24 1.65 — 0.89 178 — .088 .181 — .131 1.00 — 0.90
cg 8 1.80 — 0.66 072 — .046 .074 — .049 1.22 — 1.15

o D ||

Desc 4p 12 19950925 077 — .048 .084 — 056 0.66 — 1.17
v 12 1.20—0.38  .042 — .041 .047 — .045 0.83 — 0.97
nba 78 157 —=1.09  .067 — .058 .071 — .064 1.50 — 1.57
bw 17  125.37 — 120.09 .187 — .176 .200 — .200 1.20 — 1.12
ca 157 318.95 — 232.68 .178 — .013 .181 —.025 1.00 — 0.18
Cover 8 7 353.49 — 168.50 .072 — .046 .074 — .049 1.22 — 1.15

db 1 61.22 — 62.13 077 — .077 .084 — .084 0.66 — 0.64
Iv 2 57.57 — 27.66 .042 — .041 .047 — .047 0.83 — 1.26
nba 1 218.28 — 117.88 .067 — .036 .071 — .058 1.50 — 0.75

5.2 Case Study: Sports Analytics

As we have seen in Section 1, the subgroups discovered by DSSD were unsatis-
factory. To demonstrate that the proposed interactive approach can be used to
improve on this, we asked a basketball journalist to use IDSD and evaluate the
results. In the following we set the search parameters to mincov = 50, w = 10,
mazdepth = 3, and k = 5, and we use description similarity.

The domain expert evalu-
ated 18 subgroups during an in-
teractive search session, 13 of
length-1 and 5 of length-2. Ex-
amples of liked subgroups in-
clude crawford = F, pace <
88.977, and matthews = T A crawford = F A matthews =T 96 0.0382
hickson = T (7 subgroups in to-  hickson =T 186 0.0219
tal). Examples of disliked sub-  crawford = F A hickson =T 328 0.0211
groups are opp-def.reb = F, matthews =T A hickson =T 290 0.0163
thabeet = F, and pace < matthews =T A pace < 88.518 303 0.0221
88.977 A opponent # MIA (11
subgroups in total). The discovered subgroups are presented in Table 4. Although
the objective qualities are lower than the maximum, the results were considered
more interesting as they provided novel insights about relevant players.

A user needs to consider subgroups one by one when processing results and
providing feedback. Hence, we can estimate user effort £ by counting the sub-
groups she had to consider. The effort induced by non-interactive diverse sub-
group discovery is then equal to the lowest rank of an interesting subgroup

Table 4. Top five subgroups discovered by
IDSD with description-based similarity. For
each discovered subgroup its description, size
and quality are given.

Description Size Quality




in the result set sorted by quality. The effort induced by the interactive ap-
proach also includes the number of subgroups presented during the search:
Erpsp = maxdepth x w + |Ineg|. In this case we have Epgsp = 1049 and
Erpsp =54 (3 x 10+ 11) = 46, which confirms that within-search interaction
substantially reduces the effort required to discover interesting results.

Discussion Although this is a good example of a successful interactive session,
in some other sessions the domain expert deemed the results unsatisfactory. In
some cases the search space was pruned too eagerly, or positive and negative
evaluations were not properly balanced. Also, the expert did not find the ap-
proach using cover similarity useful, as this resulted in descriptions that were
were not interpretable. Training of the domain expert might solve this and re-
sults obviously also depend on the data, but this also shows that it is worth
investigating more elaborate similarity measures to generalize user feedback.

Another crucial drawback is an unintuitive effect on beam selection, e.g.
disliking a large subgroup based on its description (e.g. reserve_player = F)
steers the search away from promising regions. Another concern is the capacity
to discover novel subgroups (as opposed to simply replicating the feedback).
Multiple sessions might be required to explore unrelated regions. However, given
the significantly lower effort, the cumulative effort is still reduced.

6 Conclusions and Future Work

We argued that it is essential to actively involve the user in the discovery pro-
cess to obtain results that she finds interesting. To this end, we proposed the
Interactive Diverse Subgroup Discovery (IDSD) algorithm that allows a user to
provide feedback to provisional results already during search. It augments a di-
verse beam search by letting the user ‘like’ and ‘dislike’ subgroups in the beam.
Although this interaction mechanism is conceptually simple and easy to use, it
allows a user to guide the search effectively.

In the quantitative evaluation, we emulated the feedback of a user that wants
to avoid the re-discovery of common knowledge. Experiments show that unde-
sired results can be eliminated, whereas other, potentially more interesting sub-
groups are found. Furthermore, we conducted a case study in which a domain
expert was able to find more interesting patterns when compared to the results
of standard algorithms. This confirms that within-search human-computer inter-
action can contribute to a substantial reduction in the effort needed to discover
interesting subgroups.

Future Work This paper presents only a first step towards user-driven pattern
discovery, but since the user is too often still neglected we believe it is an im-
portant step. In the future, one obvious line of research is to investigate what
features other than inclusion/exclusion of individual conditions and tuples are
relevant to the user, and are therefore useful to infer subjective interestingness.

A second direction that will be essential to research is pattern visualisation. In
our prototype, we mainly focused on presenting subgroup descriptions, but in the
future it will be important to visualise the different aspects of the patterns. Not



only descriptions and covers should be visualised, but also other relevant features
such as traditional interestingness and surprisingness measures. We deem this
particularly important for larger datasets and/or beam widths. Only then will
it be possible for the user to interactively explore the data in an intuitive way.
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