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Abstract 
 
Many databases will or can not be disclosed with-

out strong guarantees that no sensitive information can 
be extracted. To address this concern several data per-
turbation techniques have been proposed. However, it 
has been shown that either sensitive information can 
still be extracted from the perturbed data with little 
prior knowledge, or that many patterns are lost.   

In this paper we show that generating new data is 
an inherently safer alternative. We present a data gen-
erator based on the models obtained by the MDL-
based KRIMP [18] algorithm. These are accurate rep-
resentations of the data distributions and can thus be 
used to generate data with the same characteristics as 
the original data. 

Experimental results show a very large pattern-
similarity between the generated and the original data, 
ensuring that viable conclusions can be drawn from 
the anonymised data. Furthermore, anonymity is guar-
anteed for suited databases and the quality–privacy 
trade-off can be balanced explicitly. 

 
 

1. Introduction 
 
Many databases will or can not be disclosed without 

strong guarantees that no sensitive information can be 
extracted from it. The rationale for this ranges from 
keeping competitors from obtaining vital business in-
formation to the legally required protection of privacy 
of individuals in census data. However, it is often de-
sirable or even required to publish data, leaving the 
question how to do this without disclosing information 
that would compromise privacy. 

To address these valid concerns, the field of pri-
vacy-preserving data mining (PPDM) has rapidly be-
come a major research topic. In recent years ample 
attention is being given to both defender and attacker 
stances, leading to a multitude of methods for keeping 
sensitive information from prying eyes. Most of these 
techniques rely on perturbation of the original data: 

altering the original data in such a way that given some 
external information it should be impossible to recover 
individual records within certainty bounds.  

Data perturbation comes in a variety of forms, of 
which adding noise, data transformation and rotation 
are the most commonly used. At the heart of the PPDM 
problem is the balance between the quality of the re-
leased data and the amount of privacy it provides. 
While privacy is easily ensured by strongly perturbing 
the data, the quality of conclusions that can be drawn 
from it diminishes quickly. This is the inherent prob-
lem of existing perturbation techniques: sensitive in-
formation cannot be fully masked without destroying 
non-sensitive information as well. This is especially so 
if no special attention is given to correlations within 
the data by means of multidimensional perturbation, 
something which has hardly been investigated so far. 

An alternative approach to the PPDM problem is to 
generate new data instead of perturbing the original. 
This has the advantage that the original data can be 
kept safely private as the generated data is published 
instead, which should render data recovery attacks use-
less. To achieve this, the expectation that a data point 
in the generated database identifies a data point in the 
original database should be very low, while all gener-
ated data together should adhere to the characteristics 
of the original database. Data generation as a means to 
cover-up sensitivities has been explored in the context 
of statistical databases [13], but that method ignores 
correlations as each dimension is sampled separately. 

We propose a novel method that uses data genera-
tion to guarantee privacy while taking important corre-
lations into account. For this we use the MDL-based 
KRIMP algorithm [18] that has been shown to provide 
accurate pattern-based approximations of data distribu-
tions. The high quality of the approximations was veri-
fied through classification [12], and consequently put 
to use for determining and characterising dissimilari-
ties between datasets [19]. Using the patterns picked by 
MDL, we can construct a model that generates data 
very similar (but not equal) to the data the patterns 
were derived from. Experiments show that the genera-
tive model is well suited for producing data that con-

1 This is an extended version of work published at ICDM 2007 [20].



serves the characteristics of the original data while 
preserving privacy. 

Using our generative method, it is easy to ensure 
that generated data points cannot reliably be traced to 
individual data points in the original data. We can thus 
easily obtain data that is in accordance with the well-
known privacy measure k-anonymity [17]. Also, we 
can mimic the effects that can be obtained with l-
diversity [15]. 

Although preserving intrinsic correlations is an im-
portant feat, in some applications preservation of par-
ticular patterns might be highly undesirable from a 
privacy point of view. Fortunately, this can easily be 
taken care of in our scheme by influencing model con-
struction. 

 
2. The Problem 

 
2.1 Data Perturbation 

 
Since Agrawal & Srikant [3] initiated the privacy-

preserving data mining field, researchers have been 
trying to protect and reconstruct sensitive data. Most 
techniques use data perturbation and these can be di-
vided into three main approaches, of which we will 
give an overview here. 

The addition of random noise to the original data, 
obfuscating without completely distorting it, was 
among the first proposals for PPDM [3]. However, it 
was quickly shown that additive randomization is not 
good enough [4]. The original data can often be recon-
structed with little error using noise filtering techniques 
[11] - in particular when the distortion does not take 
correlations between dimensions into account [10].  

The second class is that of condensation-based per-
turbation [1]. Here, after clustering the original data, 
new data points are constructed such that cluster char-
acteristics remain the same. However, it has been ob-
served that the perturbed data is often too close to the 
original, thereby compromising privacy [6]. 

A third major data perturbation approach is based 
on rotation of the data [6]. While this method seemed 
sturdy, it has recently been shown that with sufficient 
prior knowledge of the original data the rotation matrix 
can be recovered, thereby allowing full reconstruction 
of the original data [14].  

In general, perturbation approaches suffer from the 
fact that the original data is used as starting point. Lit-
tle perturbation can be undone, while stronger pertur-
bation breaks correlations and non-sensitive informa-
tion is also destroyed. In other words, there is a pri-
vacy-quality trade-off which cannot be balanced well. 

In the effort to define measures on privacy, a few 
models have been proposed that can be used to obtain a 

definable amount of privacy. An example is the well-
known k-anonymity model that ensures that no private 
information can be related to fewer than k individuals 
[17]. A lack of diversity in such masses can thwart 
privacy though and in some situations it is well possi-
ble to link private information to individuals. Improv-
ing on k-anonymity, the required critical diversity can 
be ensured using the l-diversity model. However, cur-
rently the available method can only ensure diversity 
for one sensitive attribute [15]. 

 
2.2 Data Generation 

 
The second category of PPDM solutions consists of 

methods using data generation, generating new (pri-
vacy preserving) data instead of altering the original. 
This approach is inherently safer then data perturba-
tion, as newly generated data points can not be identi-
fied with original data points. However, not much re-
search has been done in this direction yet. 

Liew et al. [13] sample new data from probability 
distributions independently for each dimension, to gen-
erate data for use in a statistical database. While this 
ensures high quality point estimates, higher order de-
pendencies are broken – making it unsuited for use in 
data mining. 

The condensation-based perturbation approach [1] 
could be regarded as a data generation method, as it 
samples new data points from clusters. However, as 
mentioned above, it suffers from the same problems as 
perturbation techniques. 

 
2.3 Problem Statement 

 
Reviewing the goals and pitfalls of existing PPDM 

methods, we conclude that a good technique should not 
only preserve privacy but also quality. This is formu-
lated in the following problem statement: 

 
A database dbpriv induced from a database dborig is pri-
vacy and quality preserving iff: 
a. no sensitive information in dborig can be derived 

from dbpriv given a limited amount of external in-
formation (privacy requirement); 

b. models and patterns derived from dbpriv by data 
mining techniques are also valid for dborig (quality 
requirement). 

 
From this statement follows a correlated data gen-

eration approach to induce a privacy and quality pre-
serving database dbpriv from a database dborig, for which 
the above requirements can be translated into concrete 
demands.  



Using KRIMP, construct a model that encapsulates 
the data distribution of dborig in the form of a code table 
consisting of frequent patterns.  Subsequently, trans-
form this code table into a pattern-based generator that 
is used to generate dbpriv.  

It is hard to define an objective measure for the pri-
vacy requirement, as all kinds of ‘sensitive informa-
tion’ can be present in a database. We guarantee pri-
vacy in two ways. Firstly, the probability that a trans-
action in dborig is also present in dbpriv should be small. 
Secondly, the more often a transaction occurs in dborig, 
the less harmful it is if it also occurs in dbpriv. This is 
encapsulated in the Anonymity Score, in which trans-
actions are grouped by the number of times a transac-
tion occurs in the original database (support): 
 
Definition 1: for a database dbp based on dbo, define 
the Anonymity Score (AS) as:  
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In this definition, dbsupp is defined as the selection of 
db with only those transactions having a support of 
supp. For each support level in dbo, a score is obtained 
by multiplying a penalty of 1 divided by the support 
with the probability that a transaction in dbo with given 
support also occurs in dbp. All these scores are 
summed to obtain AS. Note that when all transactions 
in dbo are unique (e.g., have a support of 1), AS is equal 
to the probability that a transaction in dbo also occurs in 
dbp. 

Worst case is when all transactions in dborig also oc-
cur in dbpriv. In other words, if we choose dbpriv equal to 
dborig, we get the highest possible score for this particu-
lar database, which we can use to normalise between 0 
(best possible privacy) and 1 (no privacy at all): 

 
Definition 2: for a database dbpriv based on dborig, de-
fine the Normalised Anonymity Score (NAS) as:  
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To conform to the quality requirement, the frequent 
pattern set of dbpriv should be very similar to that of 
dborig. We will measure pattern-similarity in two ways: 
1) on database level through a database dissimilarity 
measure (see Section 3.3) and 2) on the individual pat-
tern level by comparing frequent pattern sets. For the 
second part, pattern-similarity is high iff the patterns in 
dborig also occur in dbpriv with (almost) the same sup-
port. So: 

εδ <>− )suppsupp( ||P origpriv
 (3) 

The probability that a pattern’s support in dborig differs 
much from that in dbpriv should be very low: the larger 

d, the smaller e should be. Note that this second valida-
tion implies the first: only if the pattern sets are highly 
similar, the code tables become similar, which results 
in low measured dissimilarity. Further, it is computa-
tionally much cheaper to measure the dissimilarity than 
to compare the pattern sets. 

 
3. Preliminaries 

 
In this paper we discuss categorical databases. A da-

tabase db is a bag of tuples (or transactions) that all 
have the same attributes {A1,…,An}. Each attribute Ai 
has a discrete domain of possible values Di ∈ D. 

The KRIMP algorithm operates on item set data, as 
which categorical data can easily be regarded. The un-
ion of all domains » Di forms the set of items I. Each 
transaction t can now also be regarded as a set of items 
t ∈ P(I). An item set I ∈ I occurs in a transaction t ∈ 
db iff I Œ t. The support of I in db is the number of 
transactions in the database in which I occurs. Speak-
ing in market basket terms, this means that each item 
for sale is represented as an attribute, with the corre-
sponding domain consisting of the values ‘bought’ and 
‘not bought’. 

 
3.1 Compression with KRIMP 

 
Siebes et al [18] introduced the KRIMP algorithm, 

which finds a small set of patterns that together capture 
the distribution of the data. This approximation will be 
used as basis for our data generator and we will there-
fore give a quick summary of the method. 

In KRIMP, we have a code table that has item sets on 
the left-hand side and codes on its right-hand side. The 
item sets in the code table are ordered descending on 1) 
item set length and 2) support. The actual codes on the 
right-hand side are of no importance: their lengths are. 

A transaction t is encoded by KRIMP by searching 
for the first item set c in the code table for which c Œ t. 
The code for c becomes part of the encoding of t. If t \ 
c ≠ «, the algorithm continues to encode t \ c. Since we 
insist that each code table contains at least all singleton 
item sets, this algorithm gives a unique encoding to 
each (possible) transaction. The set of item sets used to 
encode a transaction is called its cover. Note that the 
coding algorithm implies that a cover consists of non-
overlapping item sets. 

To compute the length of a code that belongs to an 
item set, we encode each transaction in the database 
db. The frequency of an item set c∈CT is the number 
of transactions t∈db which have c in their cover. The 
relative frequency of c∈CT is the probability that c is 
used to encode an arbitrary t∈db. For optimal com-
pression of db, the higher P(c), the shorter its code 



should be. In fact, from information theory [9] we have 
the optimal code length for c as:  
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The length of the encoding of a transaction is now 
simply the sum of the code lengths of the item sets in 
its cover. The encoded size of a transaction t∈db com-
pressed using a code table CT is calculated as follows: 
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The size of the encoded database is the sum of the 
sizes of the encoded transactions, but can also be com-
puted from the frequencies of each of the elements in 
the code table: 
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3.2 Finding the Right Code Table 

 
Now that we defined the database compression 

scheme, we can describe the actual algorithm that finds 
the optimal code table using MDL. For this, we need to 
take into account both the compressed database size 
and the size of the code table. 

For the size of the code table, we only count those 
item sets that have a non-zero frequency. The size of 
the right-hand side column is obvious; it is simply the 
sum of all the different code lengths. For the size of the 
left-hand side column, note that the simplest valid code 
table consists only of the singleton item sets. This is 
the standard encoding (st) which we use to compute 
the size of the item sets in the left-hand side column. 
Hence, the size of the code table is given by: 
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In [18] Siebes et al defined the optimal set of (fre-
quent) item sets as that one whose associated code ta-
ble minimizes the total compressed size:  

)()( dbLCTL CT+  (8)
The algorithm starts with a valid code table (gener-

ally only the collection of singletons) and a sorted list 
of candidates. These candidates are assumed to be 
sorted descending on 1) support and 2) item set length. 
Each candidate item set is considered by inserting it at 
the right position in CT and calculating the new total 
compressed size. A candidate is only kept in the code 
table iff the resulting total size is smaller than it was 
before adding the candidate. For more details on the 
algorithm, please see [18]. 

No pruning strategy is applied in this paper, since 
keeping all patterns in the code table causes more di-
versity during data generation, as will become clear 
later. 

 
3.3 The Database Dissimilarity Measure 

 
In [19] Vreeken et al introduced a database dissimi-

larity measure based on KRIMP code table compressed 
database sizes. First define CTx(y) as the total com-
pressed size of database y as compressed with the code 
table obtained by applying KRIMP on database x. 

 
Definition 3: for all databases x and y, define the code 
table dissimilarity measure DS between x and y as:  
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Two databases are deemed very similar (possibly 
identical) iff the score is 0, higher scores indicate 
higher levels of dissimilarity. As the code tables con-
sist of frequent patterns, it is especially good at meas-
uring the pattern similarity on a database level, as ex-
periments confirmed [19]. We will therefore use it in 
our experimental section to quantify the differences 
between original and generated data, helping to verify 
the quality requirement of the problem statement. 

 
4. KRIMP Categorical Data Generator 
 

In this section we present our categorical data gen-
eration algorithm. We start off with a simple example, 
sketching how the algorithm works by generating a 
single transaction. After this we will detail the scheme 
formally and provide the algorithm in pseudo-code. 
 
4.1 Generating a transaction, an example 

 
Suppose we need to generate a new transaction for a 

simple three-column categorical database. To apply our 
generation scheme, we need a domain definition D and 
a KRIMP code table CT, both shown in Figure 1. 

We start off with an empty transaction and fill it by 
iterating over all domains and picking an item set from 
the code table for each domain that has no value yet. 
We first want to assign a value for the first domain, D1, 
so we have to select one pattern from those patterns in 
the code table that provide a value for this domain. 
This subset is shown as selection CTD1.  

Using the frequencies of the code table elements as 
probabilities, we randomly select an item set from 
CTD1; elements with high frequency occur more often 
in the original database and are thus more likely to be 
picked. Here we randomly pick ‘BD’ (probability 3/9). 



This set selects value ‘B’ from the first domain, but 
also assigns a value to the second domain, namely ‘D’.  

To complete our transaction we only need to choose 
a value for the third domain. We do not want to change 
any values once they are assigned, as this might break 
associations within an item set previously chosen. So, 
we do not want to pick any item set that would re-
assign a value to one of the first two domains. Consid-
ering the projection for the third domain, CTD3, we thus 
have to ignore set CF(2), as it would re-assign the sec-
ond domain to ‘C’. From the remaining sets E(3) and 
F(3), both with frequency 3, we randomly select one – 
say, ‘E’. This completes generation of the transaction: 
‘BDE’. With different rolls of the dice it could have 
generated ‘BCF’ by subsequently choosing CF(2) and 
B(3), and so on. 

 
4.2 Definition of the generator 

 
Here we will detail our data generator more for-

mally. First, define the projection CTD as the subset of 
item sets in CT that define a value for domain D ∈ D. 
To generate a database, our categorical data generator 
requires four ingredients: the original database, a 
Laplace correction value, a min-sup value for mining 
candidates for the KRIMP algorithm and the number of 
transactions that is to be generated. We present the full 
algorithm in pseudo-code below, and describe it in 
detail here.  

Generation starts with an empty database gdb (line 
2). To obtain a code table CT, the KRIMP algorithm is 
applied to the original database db (3). A Laplace cor-
rection laplace is added to all elements in the code 
table (lines 4 and 5). Next, we return the generated 
database when it contains num-trans transactions (lines 
7 to 9). 

Generation of a transaction is started with an empty 
transaction t (line 11). As long as D is not empty (12), 
our transaction is not finished and we continue. First, a 
domain D is randomly selected (13). From the selec-
tion CTD, one item set is randomly chosen, with prob-
abilities defined by their relative frequencies (14). Af-
ter the chosen set is added to t (15), we filter from CT 
all sets that would redefine a value – i.e. those sets that 
intersect with the definitions of the domains for which t 
already has a value (lines 16 and 17). Further, to avoid 
reconsideration we also filter these domains from D 
(18). After this the next domain is picked from D and 
another item set is selected; this scheme is repeated 
until D is empty (and t thus has a value from each do-
main). 

Note that the method treats code table elements 
fully independently, as long as they do not re-assign 
values. Correlations between dimensions are stored 
explicitly in the item sets and are thus taken into ac-
count implicitly. 

Besides the original database and the desired num-
ber of generated transactions, the database generation 
algorithm requires two other parameters: laplace and 
min-sup. Both fulfil an important role in controlling the 
amount of privacy provided in the generated database, 
which we will discuss here in more detail. 

A desirable parameter for any data generation 

Code table
A1 A2

Domain definition
D = { D1 = { A, B }; D2 = { C, D }; D3 = { E, F } }

Selections

Freq CTD1 CTD2 CTD3

A 1 – –

A 3 –C

3 –B D

2 – –B

1 – –C

1 – –D

A3

2 –C F

1 – –E

1 – –F

 
Figure 1. Example for 3-column database. 
Each frequency is Laplace corrected by 1. 

ALGORITHM KRIMPGENERATOR 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

GenerateDatabase(db, laplace, min-sup, num-trans)  
gdb = « 
CT = KRIMP(db, MineCandidates(db, min-sup)) 
for each item set e in CT  

e.frequency += laplace 
D = db.getDomains 
while(|gdb| < num-trans) 

gdb = gdb + GenerateTransaction(CT, D) 
return gdb 

 
GenerateTransaction(CT, D) 

t = « 
while D ∫ «  

pick a random D ∈ D 
is = PickRandomItemSet(CTD) 
t = t » is 
for each domain C for which is has a value 
 CT = CT \ CTC 
 D = D \ C 

return t 
 

PickRandomItemSet(CT) 
weights = { e.frequency | e ∈ CT } 
is = WeightedSample(weights, CT) 
return is 

 
 



scheme is one that controls the data diversity and 
strength of the correlations. In our scheme this parame-
ter is found in the form of a Laplace correction. Before 
we start the generation process, we always add a small 
constant to the frequency of each element in the code 
table. As the code table always contains all single val-
ues, this ensures that all values for all categories have 
at least a small probability of being chosen. Thus, 1) a 
complete transaction can always be generated and 2) 
all possible transactions can be generated. For this pur-
pose the correction needs only be small. However, the 
strength of the correction influences the chance an oth-
erwise unlikely code table element is used; with larger 
corrections, the influence of the original data distribu-
tion is dampened and diversity is increased. 

The second parameter to our database generation 
algorithm, min-sup, has a strong relation to the k-
anonymity blend-in-the-crowd approach. The min-sup 
parameter has (almost) the same effect as k: patterns 
that occur less than min-sup times in the original data-
base are not taken into account by KRIMP. As they 
cannot get in the code table, they cannot be used for 
generation either. Particularly, complete transactions 
have to occur at least min-sup times in order for them 
to make it to the code table. In other words, original 
transactions that occur less often than min-sup can only 
be generated if by chance often occurring patterns are 
combined such that they form an original transaction. 
As code table elements are regarded independent, it 
follows that when more patterns have to be combined, 
it becomes less likely that transactions are generated 
that also exist in the original database. 

 

5. Experiments 
 
In this section we will present empirical evidence of 

the method’s ability to generate data that provides pri-
vacy while still allowing for high quality conclusions 
to be drawn from the generated data.  

 
5.1 Experimental Setup 

 
In our experiments, we use a selection from the 

commonly used UCI repository [7]. Also, we use two 
additional databases that were generated with IBM’s 
Quest basket data generator [2]. To ensure that the 
Quest data obeys our categorical data definition, we 
transformed it such that each original item is repre-
sented by a domain with two categories, in a binary 
fashion (present or not). Both Quest datasets were gen-
erated with default settings, apart from the number of 
columns and transactions. 

Characteristics of all used datasets are summarized 
in Table 1, together with the minimum support levels 
we use for mining the frequent item sets that function 
as candidates for KRIMP. 

For all experiments we used a Laplace correction 
parameter of 0.001, an arbitrarily chosen small value 
solely to ensure that otherwise zero-frequency code 
table elements can be chosen during generation. 

All experimental results presented below are aver-
aged over 10 runs and all generated databases have the 
same number of transactions as the originals, unless 
indicated otherwise. 

 

Table 1. Database characteristics, candidate min-sup and dissimilarity measurements (be-
tween original and generated datasets) for a range of datasets. As candidates, frequent 
item sets up to the given minimum support level were used.  

Dataset   KRIMP Dissimilarity  

Name #rows #domains Min-sup Gen. vs. orig. Orig. internal 

Chess (kr-k) 28056 7 1 0.037 0.104 

Iris 150 5 1 0.047 0.158 

Led7 3200 8 1 0.028 0.171 

LetterRecog 20000 17 50 0.119 0.129 

Mushroom* 8124 22 20 0.010 0.139 

Nursery 12960 9 1 0.011 0.045 

PageBlocks 5473 11 1 0.067 0.164 

PenDigits 10992 17 50 0.198 0.124 

Pima 786 9 1 0.110 0.177 

Quest A 4000 8 1 0.016 0.077 

Quest B 10000 16 1 0.093 0.223 
   * Only closed item sets used as candidates. 



5.2 Results 
 
To quantify the likeness of the generated databases 

to their original counterparts, we use the database dis-
similarity measure as described in Section 3.3. In judg-
ing these measurements, a comparison with the diver-
sity within the original data distribution is a valuable 
reference. We therefore measured the dissimilarity 
between the original database and independent random 
samples of half the size from the original database. 

In Table 1 we show both these internal dissimilarity 
scores and the dissimilarity measurements between the 
original and generated databases. To put the reported 
dissimilarities in perspective, note that the dissimilarity 
measurements between the classes in the original data-
bases range from 0.29 up to 12 [19]. The measure-
ments in Table 1 thus indicate clearly that the gener-
ated databases adhere very closely to the original data 
distribution; even better than a randomly sampled sub-
set of 50% of the original data captures the full distri-
bution. 

To show that the low dissimilarities for the gener-

ated databases are not caused by averaging, we provide 
a histogram in Figure 2 for the Chess (kr-k) database. 
We generated thousand databases of 7500 transactions, 
and measured the dissimilarity of these to the original 
database. Likewise, we also measured dissimilarity to 
the original database for equally many and equally 
sized independent random samples. The peaks for the 
distance histograms lie very near to each other at 0.21 
and 0.22 respectively. This and the very similar shapes 
of the histograms confirm that our generation method 
samples databases from the original distribution.   

Turning back to Table 1, we notice that databases 
generated at higher values of the min-sup parameter 
show slightly larger dissimilarity. The effect of this 
parameter is further explored in Figure 3. First, the bar 
diagram on the left shows a comparison of the dissimi-
larity scores between uncorrelated and correlated gen-
eration: uncorrelated databases are generated by a code 
table containing only individual values (and thus no 
correlations between domains can exist), correlated 
databases are generated using the min-sup values de-
picted in Table 1 (at which the correlations in the data 
are captured in the patterns in the code table). We see 
that when generation is allowed to take correlations 
into account, the generated databases are far more 
similar to the original ones. 

Secondly, the graph on the right of Figure 3 shows 
the dissimilarity between the original PenDigits data-
base and databases generated with different values for 
min-sup. As expected, lower values of min-sup lead to 
databases more similar to the original, as the code table 
can better approximate the data distribution of the 
original data. For the whole range of generated data-
bases, individual value frequencies are almost identical 
to those of the original database; the increase in simi-
larity is therefore solely caused by the incorporation of 
the right (type and strength of) correlations. 

Now that we’ve shown that the quality of the gener-
ated databases is very good on a high level, let us con-
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Figure 2. Histogram of dissimilarities be-
tween samples (original and generated) 
and the full original db, Chess (kr-k). 
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Figure 3. left) Dissimilarity scores between generated (with and without correlations) and 
original databases. right) Dissimilarity between generated database (at different min-sups) 
and the original database for PenDigits. 

 



sider quality on the level of individual patterns. For 
this, we mined frequent item sets from the generated 
databases with the same parameters as we did for can-
didate mining on the original database. A comparison 
of the resulting sets of patterns is presented in Table 2. 
We report these figures for those databases for which it 
was feasible to compute the intersection of the frequent 
pattern collections. 

Large parts of the generated and original frequent 
pattern sets consist of exactly the same items sets, as 
can be seen from the first column. For example, for 
Led7 and Nursery about 90% of the mined item sets is 
equal. In the generated PenDigits database a relatively 
low 25% of the original patterns are found. This is due 
to the relatively high min-sup used: not all correlations 
have been captured in the code table. However, of 
those patterns mined from the generated database, 
more than 90% is also found in the original frequent 
pattern set. 

For item sets found in both cases, the average dif-
ference in support between original and generated is 
very small, as the second column shows. Iris is a bit of 
an outlier here, but this is due to the very small size of 
the dataset. Not only the average is low, standard de-
viation is also small: as can be seen from Figure 4, 
almost all sets have a very small support difference. 
The generated databases thus fulfil the support differ-
ence demands we formulated in Equation 3. 

The third column of Table 2 contains the average 
supports of item sets that are newly found in the gener-
ated databases; these supports are very low. All this 
together clearly shows that there is a large pattern-
similarity, thus showing a high quality according to our 
problem statement. 

However, this quality is of no worth if the generated 
data does not also preserve privacy. To measure the 
level of provided anonymity, we calculate the Normal-
ised Anonymity Score as given by Definition 2. These 
scores are presented in Table 3. 

As lower scores indicate better privacy, some data-
sets (e.g. Mushroom, PenDigits) are anonymised very 
well. On the other hand, other datasets (PageBlocks, 

Quest) do not seem to provide good privacy. As dis-
cussed in Section 4, the min-sup parameter of our gen-
eration methods doubles as a k-anonymity provider.  

This explains that higher values for min-sup result 
in better privacy, as the measurements for LetterRecog, 
Mushroom and Pendigits indeed show. Analogously, 
the (very) low min-sup values used for the other data-
bases result in lower privacy (aside from data charac-
teristics to which we’ll return shortly). 

To show the effect of min-sup in action, as an ex-
ample we increase the min-sup for the Chess database 
to 50. While the so-generated database is still very 
similar to the original (dissimilarity of 0.19), privacy is 
considerably increased - which is reflected by a Nor-
malised Anonymity Score of 0.15. For further evidence 
of the k-anonymity obtained, we take a closer look at 
PenDigits, for which we use a min-sup of 50. Of all 
transactions with support < 50 in the generated data-
base, only 3% is also found in the original database 
with support < 50. It is thus highly unlikely that one 
picks a ‘real’ transaction from the generated database 
with support lower than min-sup. 

Although not all generated databases preserve pri-
vacy very well, the results indicate that privacy can be 
obtained. This brings us to the question when privacy 
can be guaranteed. This not only depends on the algo-
rithm’s parameters, but also on the characteristics of 
the data. It is difficult to determine the structure of the 
data and how the parameters should be set in advance, 
but during the generation process it is easy to check 
whether privacy is going to be good. 

The key issue is whether transactions are generated 
by only very few or many code table elements. In Fig-
ure 5 we show this relation: for each dataset in Table 1, 
a cross marks the average number of item sets used to 
generate a single transaction and the Normalised Ano-
nymity Score. In the bottom-right corner we find the 

Table 2. Frequent pattern set comparison. 
 

Name % equal 
item sets 

% avg sup diff 
equal item sets 

% avg sup 
new item sets 

Chess (kr-k) 71 0.01 0.01 

Iris 83 1.69 0.80 

Led7 89 0.14 0.06 

Nursery 90 0.04 0.03 

PageBlocks 75 0.06 0.02 

PenDigits 25 0.50 0.59 

Pima 60 0.30 0.14 

Table 3. Normalised Anonymity Scores 
 

Name Normalised
Anonymity Score 

Chess (kr-k) 0.30 

Iris 0.72 

Led7 0.66 

LetterRecog 0.31 

Mushroom 0.09 

Nursery 0.49 

PageBlocks 0.77 

PenDigits 0.22 

Pima 0.64 

Quest A 0.84 

Quest B 0.81 



generated databases that preserve privacy well, includ-
ing PenDigits and LetterRecog. At the top-left reside 
those databases for which too few elements per trans-
action are used during generation, leading to bad pri-
vacy; Quest, PageBlocks and Led7 are the main cul-
prits. Thus, by altering the min-sup, this relation allows 
for explicit balancing of privacy and quality of the 
generated data. 

 
6. Discussion 

 
The experimental results in the previous section 

show that the databases generated by our KRIMP Cate-
gorical Data Generator are of very high quality; pattern 
similarity on both database level and individual pattern 
level is very high. Furthermore, we’ve shown that it is 
possible to generate high quality databases while pri-
vacy is preserved. The Normalised Anonymity Scores 
for some datasets are pretty low, indicating that hardly 
any transactions that occur few times in the original 
database also occur in the generated database. As ex-
pected, increasing min-sup leads to better privacy, but 
dissimilarity remains good and thus the trade-off be-
tween quality and privacy can be balanced explicitly. 

A natural link between our method and k-anonymity 
is provided by the min-sup parameter, of which we’ve 
shown that it works in practice. While we haven’t ex-
plored this parameter in this work, it is also possible to 
mimic l-diversity, as in our method the laplace pa-
rameter acts as diversity control. The higher the 
Laplace correction, the less strong the characteristics of 
the original data are taken into account (thus degrading 
quality, but increasing diversity). Note that one could 
also increase the Laplace correction for specific do-
mains or values, thereby dampening specific (sensitive) 
correlations – precisely the effect l-diversity aims at. 

To obtain even better privacy, one can also directly 
influence model construction: for example, by filtering 

the KRIMP candidates prior to building the code table. 
Correlations between specific values and/or categories 
can be completely filtered. If correlations between val-
ues A and B are sensitive, then by removing all pat-
terns containing both A and B from the candidate set, 
no such pattern can be used for generation. 

From Figure 5 followed that the number of patterns 
used to generate a transaction greatly influences pri-
vacy: more elements leads to higher anonymity. In the 
same line of thought, the candidate set can be filtered 
on pattern length; imposing a maximum length directly 
influences the number of patterns needed in generation, 
and can thus increase the provided anonymity.  

The average number of patterns needed to generate 
a transaction is a good indication of the amount of a-
nonymity. We can use this property to check whether 
parameters are chosen correctly and to give a clue on 
the characteristics of the data. If already at high min-
sup few patterns are needed to encode a transaction, 
and thus hardly any ‘sensitive’ transactions occur, the 
database is not ‘suited’ for anonymisation through gen-
eration.  

Reconsidering our problem statement in Section 2, 
the KRIMP generator does a good job as solution for 
this PPDM problem. The concrete demands we posed 
for both the quality and privacy requirements are met, 
meaning that databases generated by our method are 
privacy and quality preserving as we interpreted this in 
our problem statement. Generating new data is there-
fore a good alternative to perturbing the original data. 

Our privacy-preserving data generation method 
could be well put to practice in the distributed system 
Merugu and Ghosh [16] proposed: to cluster privacy-
preserving data in a central place without moving all 
the data there, a privacy-preserving data generator for 
each separate location is to be built. This is exactly 
what our method can do and this would therefore be an 
interesting application. 
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Figure 4. Difference in support, 

supp(dbpriv) – supp(dborig), for identical 
item sets in generated and original Led7. 
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Figure 5. Average number of patterns used to 

generate a transaction versus Normalised 
Anonymity Score, for all datasets in Table 1. 



Because the quality of the generated data is very 
high, the method could also be used in limited band-
width distributed systems where privacy is not an is-
sue. For each database that needs to be transported, 
construct a code table and communicate this instead of 
the database. If precision on the individual transaction 
level is not important, new highly similar data with the 
same characteristics can be generated. 

In this paper, we generated databases of the same 
size as the original, but the number of generated trans-
actions can of course be varied. Therefore, the method 
could also be used for up-sampling. Furthermore, it 
could be used to induce probabilities that certain trans-
actions or databases are sampled from the distribution 
represented by a particular code table. 

 
8. Conclusions 

 
We introduce a pattern-based data generation tech-

nique as a solution to the privacy-preserving data min-
ing problem in which data needs to be anonymised. 
Using the MDL-based KRIMP algorithm we obtain ac-
curate approximations of the data distribution, which 
we transform into high-quality data generators with a 
simple yet effective algorithm. 

Experiments show that the generated data meets the 
criteria we posed in the problem statement, as privacy 
can be preserved while the high quality ensures that 
viable conclusions can still be drawn from it. The qual-
ity follows from the high similarity to the original data 
on both the database and individual pattern level. Ano-
nymity scores show that original transactions occurring 
few times only show up in the generated databases 
with very low probability, giving good privacy.  

Preserving privacy through data generation does not 
suffer from the same weaknesses as data perturbation. 
By definition, it is impossible to reconstruct the origi-
nal database from the generated data, with or without 
prior knowledge. The privacy provided by the genera-
tor can be regulated and balanced with the quality of 
the conclusions drawn from the generated data. For 
suited databases, the probability of finding a ‘real’ 
transaction in the generated data is extremely low. 
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