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Abstract. We propose a novel approach to finding explanations of de-
viating subsets, often called subgroups. Existing approaches for subgroup
discovery rely on various quality measures that nonetheless often fail to
find subgroup sets that are diverse, of high quality, and most importantly,
provide good explanations of the deviations that occur in the data.

To tackle this issue we introduce explanation networks, which provide
a holistic view on all candidate subgroups and how they relate to each
other, offering elegant ways to select high-quality yet diverse subgroup
sets. Explanation networks are constructed by representing subgroups
by nodes and having weighted edges represent the extent to which one
subgroup explains another. Explanatory strength is defined by extending
ideas from database causality, in which interventions are used to quantify
the effect of one query on another.

Given an explanatory network, existing network analysis techniques can
be used for subgroup discovery. In particular, we study the use of Page-
Rank for pattern ranking and seed selection (from influence maximiza-
tion) for pattern set selection. Experiments on synthetic and real data
show that the proposed approach finds subgroup sets that are more likely
to capture the generative processes of the data than other methods.

1 Introduction

Within the field of exploratory data mining, subgroup discovery (SD) [7, 21] is
concerned with finding and explaining deviating subsets, i.e., regions in the data
that stand out with respect to a given target. It has a number of closely related
cousins, such as significant pattern mining [20] and emerging pattern mining
[3], which all concern the discovery of patterns correlated with a Boolean target
concept. The subgroup discovery task is more generic, as it is agnostic of the
data and pattern types. For example, the target could be discrete or numeric
[13], both of which we consider in this paper.

Since its introduction twenty years ago, many algorithms and quality mea-
sures have been proposed in the literature. While the initial focus was on devising
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more efficient algorithms, over time the focus has shifted towards redundancy
elimination [9, 14, 10], (statistical) validation [5], and generalization of the task
[12]. Nevertheless, existing approaches have several limitations, in particular
where it concerns the core of the subgroup discovery task: providing accurate
explanations of the deviations that occur in the data. This has several causes.

First of all, quality measures in subgroup discovery traditionally combine—
often by multiplication—the size of the subgroup, i.e., the number of rows it
covers, with its effect, i.e., the extent to which the target value for those rows
deviates from the dataset average. The problem with this approach is that this
results in a somewhat arbitrary trade-off between size and effect that has a very
large impact on the scores (and thus ranking) of all patterns.

Second, most approaches that aim to eliminate redundancy take these in-
dividual qualities for granted and primarily consider the covers of subgroups
to discard redundant patterns. This is true for, e.g., approaches based on rele-
vancy/closedness [9] and generalization-aware pruning [14]. Furthermore, none
of these methods explicitly considers redundancy among subgroups that do not
share any attributes among their descriptions, neither do they explicitly con-
sider the possibility that one description may be more interesting/relevant than
another. That is, a subgroup is either kept or discarded and no alternatives
are offered, where the exact choice between similar subgroups is pretty much
random. Some approaches, such as DSSD [10], are heuristic and defined proce-
durally, which makes it even harder to assess the results.

As a consequence of the above, existing methods do not provide accurate
descriptions for deviating subsets in practice, as we will empirically show in
Section 6. That is, finding deviating subsets and descriptions that correspond to
those subsets is doable, but identifying accurate explanations, i.e., descriptions
that capture the data generating process, is a much harder task.

Approach and contributions We introduce explanation networks, i.e., net-
works in which the nodes represent subgroups and weighted, directed edges rep-
resent explanations between pairs of subgroups. Explanation networks offer a
global perspective on all subgroups and their relationships, regardless of the
branches of the search tree the subgroups happen to reside. As a result, the net-
work naturally represents all information concerning relevancy and redundancy.

Technically, we build on ideas from database causality [15, 16] to quantify to
what extent subgroups “explain” each other. In particular, we use the notion
of an intervention [22, 19]: we say that a subgroup T explains a subgroup S if
removing the cover of T from the cover of S results in a (much) smaller effect.
Because a larger T is more likely to (partially) explain S by chance than a smaller
T , we normalize its explanatory influence with its expected explanation. The
result is an elegant formula that quantifies explanatory strength with a number
of desirable properties. For example, it explicitly distinguishes effect from cover
size and accounts for both in a principled way; others will be discussed later.

We demonstrate the strengths of explanation networks through two differ-
ent pattern mining tasks. First, we show how subgroups can be ranked based
on their global explanatory power, i.e., by considering all pairwise relationships.



3

We achieve this by observing that this setting is analogue to that of identify-
ing relevant webpages on the World Wide Web and thus apply PageRank to
explanation networks. Second, we observe another analogy to network analysis
and show how the pattern set selection task, i.e., the task of selecting a small
and diverse set of subgroups, can be formalized as a seed selection (Influence
Maximization) problem on explanation networks.

The remainder of the paper is organized as follows. First, we discuss related
work in Section 2, followed by preliminaries in Section 3. We then formally intro-
duce explanation networks in Section 4 and describe the two tasks in Section 5.
Section 6 presents experiment results, both on synthetic and real data, after
which we conclude with conclusions and a brief outlook in Section 7.

2 Related work

This section provides a high-level overview of two categories of related work
aimed at discovering and explaining phenomena observed in data, namely 1)
causality in databases, and 2) subgroup discovery.
Database causality Establishing “actual causality” requires controlled ran-
domized experiments and thus cannot be accomplished using purely observa-
tional data [17]. Database research therefore uses a relaxed definition of causal-
ity, which originates from database provenance and focuses on identifying causal
relations between tuples, i.e., which tuples in a database (input tuples) affect
the results of a query (output tuples or columns thereof) [15, 16]?

An important extension of this line of work replaces fine-grained “causes” de-
scribed by (potentially large) collections of individual tuples by coarse-grained
explanations, i.e., concise descriptions of those collections in a certain formal
language, with an emphasis on aggregate queries [22, 19]. The controlled ex-
periment required to establish actual causality is approximated by a database
intervention, i.e., by the removal of tuples that satisfy a certain description. Key
challenges in this approach are 1) defining scoring functions for explanations,
and 2) finding and returning the best explanations [18].
Subgroup discovery Subgroup discovery (SD) [7, 21] is concerned with finding
descriptions of subsets of a dataset that have a substantial deviation in a property
of interest, relative to the entire dataset; see Atzmueller [1] for a recent overview.
The property of interest, or target, is typically an aggregate of a chosen attribute,
e.g., the mean of a numeric attribute. SD algorithms typically rely on bounds
on the measure of deviation to prune the search space [13].

One of the crucial shortcomings in traditional SD is the redundancy of results,
i.e., the situation wherein the subgroups with the highest quality contain many
variations of the same theme and describe only few interesting subsets. Therefore,
a wide range of approaches, including the one proposed in this paper, aim at
eliminating redundancy in SD. Below we briefly discuss a number of existing
methods; an empirical comparison is presented in Section 6.

Sequential covering schemes, e.g., CN2-SD [8], prune or penalize subgroups
that overlap with higher-ranked subgroups. Likewise, in cascaded SD [4], sub-
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groups that essentially improve regression accuracy for undescribed instances
are incrementally added to the result set. Although we also compare subgroups
by analyzing the subsets of the data that they describe (by means of a database
intervention), we do not aim at incrementally constructing a single subgroup list.
Impact rules [5] and generalization-aware SD [14] prune subgroups that do not
improve on their (shorter) ancestors. Unlike these methods, we also relate and
compare subgroups that do not share any part of their description. Skylines of
subgroup sets [11] explicate the trade-off between quality and redundancy of a
set of subgroups by building the Pareto front for the given dataset and target.

3 Preliminaries

In the following, we assume the data D to consist of n rows and m+1 attributes.
There are m description attributes x1, . . . , xm, and a single target attribute y. The
domains of xi need not be bounded; each domain can be either categorical (nom-
inal or ordinal) or quantitative. In the definitions we assume y to be quantitative,
i.e., y ∈ R, but the results can be trivially extended to the common Boolean set-
ting, y ∈ {false,true}, by considering the proportion of trues instead of the
mean when computing the quality or effect size of a subgroup.

In subgroup discovery, a subgroup description S is usually a conjunction of
conditions on the description attributes, where every condition is of the form
xi � vi, where � is one of <,>,≥,≤,=, and vi is some value from the domain
of xi. For example, S = {x1 ≤ 0.4 and x3 = 1}. The set of all such descriptions
constitutes the pattern language L. However, the methods we discuss in this
paper are agnostic of the particular type of description language and subgroup
mining algorithm being used.

The (subgroup) cover of S, denoted cD(S), are the rows in data D that satisfy
description S. One could also think of the subgroup description as a query, and
the cover as the result set of this query. As a special case, we denote by cD(∅)
all rows of D, i.e., an empty description matches all rows in D. The (cover) size
of a subgroup is defined as the number of data rows it covers, i.e., |cD(S)|.

Define the effect of S in data D as

qD(S) =
∑

i∈cD(S)

yi. (1)

The average effect of S in D is then defined as

µD(S) =
qD(S)

|cD(S)|
. (2)

Also, we denote by µD the mean of the target attribute in the entire data D.
Given the previous, the traditional subgroup discovery task is to find the

top-k subgroup descriptions with regard to some quality measure φ : L → R.
Quality measures typically combine the size of the subgroup cover with the
observed deviation in the target attribute. Probably the best known quality
measure is Weighted Relative Accuracy (WRAcc), which we will formally define
when we need it in Section 6.
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4 Explanation Networks

Before we formalize explanation networks, we first describe how to adapt ideas
from database causality to define to what extent subgroups “explain” each other.

4.1 Interventions as explanations

For the moment, we consider comparing two subgroups, S and T . Recent re-
search [22, 19] in the database community has developed methods that can be
used to explain away outliers (deviations) in aggregate queries in relational
databases. As the basic mechanism is that of an intervention and the goal is
to explain deviations, this research area is often called database causality. We
adopt a similar technique to quantify how much the effect of subgroup S can be
explained by subgroup T .

The database causality approach is based on the simple principle where indi-
vidual data items are the fundamental contributing factors to all observed effects.
In an intervention, part of the data are removed, and we observe what happens
to the deviation (of some target) in the data that remains. If this deviation is
substantially changed after the removal of some data, we can conclude that the
removed data play an important part in the observed deviation, and thus in part
explain the observed deviation. Given a query that exhibits anomalous behavior,
the goal is to find those queries that reduce this anomalous behavior the most,
the idea being that those are likely to be (causal) explanations of the deviation.

This setting is strikingly similar to the subgroup discovery setting that we
consider: subgroup descriptions can be interpreted as queries and we are also
interested in the deviation in some target. Let us therefore translate Wu and
Madden’s [22] influence definition to our notation. First, we slightly abuse no-
tation, and let D \ T denote D \ cD(T ) for short, i.e., D \ T are those rows in
data D that do not belong to the cover of subgroup description T . Then, the
(database) influence of a subgroup T on S is defined as

infl(S, T ) =
qD(S)− qD\T (S)

|cD(S) ∩ cD(T )|
. (3)

By Equation 1, qD\T (S) is the effect of S in data where subgroup T is not
true. Informally, we compare the effect of S in data D to the effect of S in data
from which cD(T ) has been removed, normalized by the number of data rows
that satisfy both S and T .

Considering the difference in effect of S with and without T is a natural
choice, as it is this effect that we are trying to explain. Averaging over the number
of affected data rows, however, causes a strong bias towards smaller explanations:
the smaller |cD(S) ∩ cD(T )|, the larger the influence. This is undesirable, in
particular in the subgroup discovery setting, as subgroups with small covers tend
to have long descriptions and do not generalize well. In practice, this results in
many subgroups consisting of very few data rows that together ‘explain’ the
larger subgroups.
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No normalization at all, on the other extreme, is not an option either: in that
case subgroups T having a large cover are more likely to have a large influence. In
fact, without the denominator in Equation 3 we would have infl(S, ∅) = qD(S)−
qD\D(S) = qD(S), implying that all data D = cD(∅) always has the largest
possible influence on any subgroup S. (Recall that ∅ is the empty subgroup
description that matches all of D.)

Motivated by the previous, the solution that we propose is to compare the
observed influence of T on S to the expected influence of a random subset of data
rows having (roughly) the same size as cD(T ). The aim of this is to reduce the
influence of subgroups that have a large cover, as their influence would otherwise
be disproportionally strong. Let T ∗ denote a random subset of the rows of D,
so that that every row in D has an equal probability to belong to T ∗, and we
have E[|T ∗|] = |cD(T )|. Notice that rather than requiring T ∗ to have exactly the
same size as cD(T ), we only constrain it to have the same size in expectation.
This makes the resulting calculations much simpler, while achieving the same
practical outcome of normalizing the influence with respect to cover size. The
expected effect of S in data D \ T ∗ is then given by

E[qD\T∗(S)] =
∑

i∈cD(S)

Pr[i /∈ cD(T ∗)]yi, (4)

=

(
1− |cD(T )|

n

) ∑
i∈cD(S)

yi =

(
1− |cD(T )|

n

)
qD(S). (5)

Observe that this definition has two desirable properties: 1) it scales linearly
with qD(S), meaning that it is potentially larger for subgroups that have a large
deviation in the target attribute; and 2) the expected influence is smaller for
larger cD(T ) (and vice versa). The explanation of T on S, denoted E[S, T ], is
then defined as the difference between the expected effect of S in D \T ∗ and the
observed effect of S in D \ T , i.e.,

E[S, T ] = E[qD\T∗(S)]− qD\T (S) =

(
1− |cD(T )|

n

)
qD(S)− qD\T (S). (6)

This definition makes use of the desirable properties that expected effect has
and has two desirable properties itself. First, it is 0 for both cD(T ) = D (i.e.,
when T = ∅) and cD(T ) = ∅, meaning that neither the complete dataset nor the
empty set is a good explanation of any subgroup S. Observe that the definition
in Equation 6 allows both positive as well as negative effects: the effect of S can
both increase and decrease after the intervention, and the correction for expected
effect does not exclude the possibility of either direction.

4.2 Defining the network

Next we propose a novel concept that allows us to deal with the mutual rela-
tionships between multiple subgroups. While most traditional pattern mining
approaches consider the pattern lattice—i.e., the search space, as defined by the
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pattern language, that search procedures typically traverse as a tree—we propose
a holistic perspective instead and introduce a global network of patterns.

Specifically, we define a weighted directed graph G where individual subgroups
are nodes, and two nodes, S and T , are connected with a directed edge (S, T ) if
S can be (partially) explained by T . The weight of edge (S, T ), denoted w(S, T ),
must be proportional to the amount with which T explains S. Clearly, we will
use w(S, T ) = E[S, T ]. Formally, we have the following.

Definition 1 (Explanation Network). Given data D and a set of subgroups
S, define the explanation network G as G = (V,W ), where V = S and W =
{(S, T ) | S, T ∈ S}. Each (S, T ) ∈W has weight w(S, T ) = E[S, T ].

A distinguishing feature of explanation networks is that they contain infor-
mation regarding both the mutual relationships between patterns 1) from the
same branch of the search tree; and 2) from different branches of the search tree.
Especially the second property is unique in that it allows to discover and exploit
overlap/redundancy across completely disjoint subgroup descriptions, which is
achieved by the holistic view on the covers of all subgroups in S. As such, ex-
planation networks can be used for many different tasks; the next section will
describe how they can be used for two tasks.

5 Using Explanation Networks

Explanation networks can be used for different purposes. In this section we
describe how they can be used for two different mining tasks, i.e., 1) pattern
ranking, and 2) pattern set selection.

5.1 Pattern ranking

The explanations describe pairwise relationships between two subgroups, but in
certain situations it may be of interest to provide a global score or ranking. To
turn the pairwise relationships into a scoring method, we propose the following.
Intuitively, subgroups that are good at explaining other subgroups should have a
high score. Especially this should hold for subgroups that are good explanations
of other high scoring subgroups. This can be expressed in the following recursive
definition for score(T ):

score(T ) ∝
∑
S

score(S)E[S, T ]. (7)

This definition is analogous to that of PageRank [2], the well-known ranking
method for web search that uses random walks, i.e., stochastic processes that
move between a number of states, where the probability to move to any other
state only depends on the current state of the walk. The PageRank score of a
page is defined as its probability in the stationary distribution. Indeed, if this
probability is high, the page must be easy to reach, and is thus of high quality.
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We adapt this idea to the context of subgroups and the explanation network:
if the stationary probability of a subgroup is high, then it must be easy to reach
and therefore have high explanatory power. That is, we define a random walk
where subgroups are states, and the transition probability from subgroup S to
subgroup T is proportional to w(S, T ), i.e., the weight of the edge from S to T .

Formally, given the explanation network G with N nodes, we construct a
random walk as follows. Let A denote a square matrix, the transition probability
matrix, where element A[i, j] is equal to the transition probability from state i
to state j, defined in two steps as follows.

1. Define the N ×N matrix Ā so that

Ā[S, T ] =

{
w(S, T ) if w(S, T ) > 0,

0 otherwise

for all S and T . (Here we abuse notation slightly and denote the row and
column indices that correspond to subgroups S and T simply by S and T .)

2. Define the N ×N matrix A so that, for all S and T ,

A[S, T ] = Ā[S, T ]/
∑
S

Ā[S, T ].

For a random walk to have a stationary distribution, it must be irreducible
and aperiodic. In PageRank this is commonly enforced by adding a teleportation
distribution. Let b denote the teleportation distribution that satisfies

∑
i bi = 1,

where bi is equal to the probability to move from any state to state i.
Finally, the score of every subgroup is given by the PageRank vector s ∈ RN ,

i.e., the stationary distribution of the random walk, defined by [2]:

s = αATs + (1− α)b. (8)

If α = 1 the teleportation distribution has no effect; in practice we usually set
α = 0.7, meaning that s is mainly affected by A (i.e., the E[S, T ] values). See
also Subsection 6.2 for a brief empirical study of the effect α has.

In the simplest case we can use a uniform distribution for b, i.e., we let bS =
1/N for all S. The teleportation distribution can also be used to bias the resulting
scores based on some other criteria: subgroups S that have higher values of bS
also tend to have higher scores sS . This idea was used to define “personalized”
variants of PageRank. [2] When scoring subgroups, we can define b so that bS
is proportional to, e.g., effect size qD(S), or cover size |cD(S)|. PageRank thus
allows to combine different ranking criteria using the same framework.

5.2 Pattern set selection

While a pattern ranking can be of interest in a wide range of scenarios, e.g., when
using patterns as input for a next analysis phase, under certain circumstances it
can be more useful to have a set of non-redundant patterns. When patterns are
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to be presented to domain experts, for example, the result set should be small.
In these cases we can benefit from the explanation network by selecting a set of
patterns that explain numerous yet distinct patterns in the network.

As with pattern ranking, we observe that this problem strongly resembles a
well-known problem in network analysis: in this case, the influence maximization
(InfMax) problem [6] in social networks. The InfMax problem concerns the se-
lection of the k nodes in a network that are together the most influential, where
influence is defined in terms of an influence propagation model.

We use the Independent Cascade Model (ICM) [6], because of its simplicity
and nice theoretical properties (discussed below). The ICM assumes every node
of the network to be either active or inactive. Initially all nodes are inactive,
except a seed set of k nodes that are active. At every round, nodes that became
active in the previous round (in the 1st round the seed nodes) attempt to activate
their immediate neighbors. Each activation attempt is independent, and succeeds
with probability P[T, S], where T is an active node and S is an inactive node.
The process finishes when no activation attempt in a round is successful. The
influence of the seed set is the number of active nodes when the process finishes.

To adapt this idea for subgroup set selection, we solve the InfMax problem
on the explanation network G with appropriately defined activation probabilities
P[T, S]. Intuitively, as we want to find a pattern set that has a high explanation
strength, we let P[T, S] ∝ w(S, T ). I.e., T activates S with a probability that is
directly proportional to the explanation of subgroup T on subgroup S. In practice
we let P[T, S] = A[S, T ], where A[S, T ] is defined in the same way in Section 5.1.
However, our approach is by no means tied to ICM; any propagation model that
can be parametrized in terms of the network weights w(S, T ) can be used.

The explanation maximization problem is then defined as finding those k
subgroups that maximize influence when chosen as the seed set. Kempe et al. [6]
showed that solving the InfMax problem is in general NP-hard, but also that
the ICM results in a submodular influence function. Therefore the problem can
be solved efficiently by a greedy algorithm that one at a time selects the node
that maximizes marginal gain in influence. This algorithm has a constant ap-
proximation ratio, i.e., it provides a solution of size k that has influence at least
(1 − 1/e) times the influence of the optimal solution. All experiments in this
paper are carried out using this algorithm.

Finally, an important aspect that differentiates the explanation network from,
e.g., social networks is its density, i.e., it contains substantially more edges in
relation to the number of vertices. In practice the explanation network can be
a single, large clique. As the complexity of seed selection algorithms mostly
depends on the number of edges, it is very important to use an efficient algorithm
despite the number of edges often being much lower than in social networks.

6 Experiments

In this section we evaluate how well the two tasks based on explanation networks
that we introduced perform and empirically compare them to existing methods.
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Baseline methods: We consider the following four baseline methods, as they are
well-known and the latter two are representative of the state of the art:

NRAcc: Rank patterns in decreasing order of Normalized Relative Accuracy,
i.e., (µD(S)−µ)/σ, where µ and σ denote global mean and standard deviation
of the target attribute.

WRAcc: Rank patterns in decreasing order of Weighted Relative Accuracy,
defined as

√
|S| ×NRAcc.

Generalization aware pruning (gap): Rank patterns in decreasing order
of the gap score, defined as µD(S) −maxS′ µD(S′), where S′ is a subgroup
that is a generalization of S (i.e., its description consists of a subset of the
conditions in the description of S).

Greedy-WRAcc: Sequential covering using WRAcc: iteratively select that
subgroup that maximizes WRAcc (as defined above), remove the rows that
belong to its cover from the data, and iterate until enough subgroups have
been selected or until the data is exhausted.

Real data: As datasets we use the Abalone (aba), Credit-G (cg), Mushroom
(mush), Redwine (rw), and Wages (wag) from the UCI Machine Learning reposi-
tory4. Further, we also include Elections (ele) as described in [10] and the Helsinki
housing (hel) [23] dataset. cg and mush have a Boolean target, all others have a
numeric target. On-the-fly discretisation of numeric description attributes was
applied, meaning that 6 equal-size intervals were created upon pattern extension.
Dataset sizes range up to 8337 rows (for hel) and 73 attributes (for ele).
Subgroup candidates: In the experiments we assume a fixed candidate set of
subgroups. The candidate set is obtained by mining subgroups using NRAcc (as
defined above) using a support threshold of 10% and maximum search depth of
3. If there were more than 5000 candidates, these were initially ranked in terms
of WRAcc, and the top-5000 were kept for the experiment.
Note on running times / complexity: Constructing the explanation network re-
quires computing intersections of cD(S) between all pairs of subgoups. Pagerank
is computed using the basic power-iteration method, which converges rapidly in
practice. For the seed selection task we use the greedy algorithm and some sim-
ple optimizations to speed up influence computations. Our methods5 complete
in approximately 15 minutes for the largest datasets (hel, elections), and in less
than a minute for the smaller ones.

6.1 Artificial data generation

We employ two approaches for creating artificial data with planted subgroups.
The first one is based on a Bayesian network model, while the second one com-
bines a real dataset with an artificial target attribute.

Bayesian network This generative model (illustrated in Figure 1) consists of
a number of independent causal chains with variables X that all end in the

4 http://archive.ics.uci.edu/ml/
5 Source code is available at: http://anttiukkonen.com/explanation-networks/
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target attribute Y , and a number of random attributes R that are independent
of everything, including Y . The idea is to model several different causes for
observing Y = 1 in the underlying process. Ideally we find subgroups where the
description does not contain any random attributes.

Fig. 1. A Bayesian network with l independent
“chains”, and a single target attribute Y .

Here Xi
1 is the root cause

of the output Y in chain i, the
other Xi

js are intermediary ef-
fects. The conditional proba-
bilities of the Xi

j variables are

adjusted so that Xi
j = 1 al-

most always when Xi
j−1 = 1,

and Xi
j = 0 almost always

when Xi
j−1 = 0. Also, Y i = 1

almost always when Xi
h = 1,

and Y i = 0 almost always
when Xi

h = 0. Finally, Y = 1
whenever at least one Y i = 1,
and Y = 0 otherwise. Data
from the model is generated
by first drawing a dataset of size N separately from every chain. These are com-
bined by concatenating the vectors and by introducing the global target variable
Y that is simply the union of the Y is from every chain. The original Y is are
removed. To generate data from one of the causal chains, we compute the exact
joint distribution of the Xi

j and Y i variables, and then draw N binary vec-
tors from this distribution. In addition, we add q “non-causal” noise variables
Ri1, . . . , R

i
q by creating randomly permuted copies of some of the Xi

j .
Below we refer to data sampled from this model using the notation BN(h, q, l).

For example, BN(2,4,5) refers to data from a model with five chains, each con-
taining two causal variables and four noise variables (that is, 30 variables in total
that serve as description attributes, plus one target).

Latent cause model In a manner similar to the approach described above, we
aim to simulate a scenario where the objective is to uncover the “true” cause
of a phenomenon. In the Bayes network model this true cause was expressed by
the observed Xi

j variables. Now we increase the level of difficulty and assume
that the true cause is unobserved: it is only reflected in a noisy, numeric target
attribute. Moreover, we assume that no perfect description of the true cause
exists. In concrete, the true underlying cause is an unobserved binary attribute
Z. The observed target Y is generated from Z by drawing a random “low” value
for those rows for which Z = 0, and a random “high” value for rows where
Z = 1. The aim is to find subgroups the covers of which are a good match with
Z = 1 (and do not necessarily have a high quality w.r.t. the observed target).

To maintain a realistic structure of the search space, we start from a given
real dataset D and replace its original target attribute with an artificial one:

1. Select a random subset Z of the rows of D, s.t. |Z| = 1/3|D|. This corre-
sponds to the “true” underlying cause.
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2. Find a set of random subgroups. Select K of these s.t. their covers match the
set Z as well as possible. (We used the F1-measure to calculate the goodness
of the match.) These are the subgroups that we aim to find.

3. Create a target attribute Y where the value for rows in Z is drawn from a
normal distribution having mean 2 and stdev 1, while the value for the other
rows is drawn from a normal distribution with mean 0 and stdev 1. Replace
the original target of D with Y .

6.2 Pattern ranking

In the first experiment we use data from the Bayes network model to study
what effect the α parameter of Eq. 8 has on the resulting pattern ranking. We
define the teleportation distribution using the normalized relative accuracies of

the subgroups, i.e., we let bS ∝ µD(S)−µ
σ for every S, where µ and σ are the

mean and standard deviation, respectively, of the target attribute in D. Now α
can be understood as a parameter that adjusts the effect between NRAcc and
explanation strength of a subgroup. (For α = 0 the ranking is only based on
NRAcc, while for α = 1 it is only based on the explanation strengths.)

With Bayes network data we can evaluate performance in terms of AUC
by treating the pattern ranking problem as a classification problem where the
objective is to separate those subgroups that have “non-causal” attributes in
their description from those that only have “causal” attributes. We consider
all subgroups that do not have any noise variables Ri in their descriptions as
“causal”. That is, we are very strict and want to find such subgroups that only
describe phenomena that are associated with the target according to our model.

Results are shown in Fig. 2. From the two top-most panels we can observe
that the PageRank-based pattern ranking approach performs well in terms of
AUC. The lines are average AUCs over 20 independently drawn datasets (of 5000
rows) from the respective models, and the dashed lines show näıve confidence
bands of ± 3 standard deviations. Especially when the target has several inde-
pendent causes (BN(5,5,5)), we find the explanation network to show significant
improvements over using WRAcc (or NRAcc) only. The panels in the bottom row
of Fig. 2 show how explanation based pagerank is related to both WRAcc and
subgroup size in subgroups mined from BN(5,5,5) (5000 rows) with α = 0.85.
Indeed, we can observe that pagerank separates the “causal” subgroups (shown
in blue) from the “non-causal” subgroups (red) better than WRAcc. Moreover,
while the explanation based ranking tends to favor large subgroups, simply rank-
ing subgroups by size would not give the same result either.

6.3 Pattern set selection

We continue with an experiment where the task is always to retrieve a pattern
set of 20 subgroups from the given candidate set. Results with Bayes network
data are evaluated in terms of precision of retrieving “causal” subgroups, i.e.,
the fraction of such subgroups in the 20 subgroups returned. Results with latent
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Fig. 2. Top-left: Mean AUC (solid) and näıve confidence bands (dashed) as a function
of α using BN(3,6,3) data (see legend of top-right). Top-right: AUC as a function of
α using BN(5,5,5) data. Bottom-left: Pagerank score vs. WRAcc for subgroups from
BN(5,5,5). Bottom-right: Pagerank score vs. size for subgroups from BN(5,5,5).

cause model are evaluated in terms of precision of retrieving “correct” subgroups,
where a subgroup is considered as “correct” if it was chosen in step 2 of the target
generation procedure (K = 20). Finally, results with real, unmodified data are
evaluated in terms of a score function that is composed of four quantities: 1)
average cover size (avg.size), 2) average quality (avg.qual), 3) entropy of the
cover distribution (cent), and 4) fraction of data rows that are covered by at least
one of the chosen subgroups (ccov). These are computed for all methods, and
normalized to [0, 1] by dividing with the value attained by the best performing
method. The final score, denoted PSS (for “pattern set score”), is the geometric
mean of these normalized numbers. We use the geometric mean because all four
quantities are important and poor performance in even only one of them is
undesirable. This score is also shown for the artificial datasets.

Results with Bayes network data are shown in Fig. 3, where we plot precision
against pattern set score for all methods under different parametrizations of the
Bayes network. Our methods (P and S, shown in red) have both higher precision
as well as PSS score for all but the most simplest model, BN(2,2,2).
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Fig. 3. Precision and Pattern Set Scores for experiments with Bayes data. The proposed
explanation based methods “pagerank” (P) and “seeds” (S) outperform the competitors
in the hard settings with larger numbers of antecedents (h) and component chains (l).

Results with latent cause data are shown in Table 1. This is a very hard
task, as there are very few planted subgroups, and these are by definition not
very well correlated with the noisy target. The explanation based approaches
have the highest aggregate scores. Furthermore, they are the only methods that
succeed in discovering some of the planted subgroups.

Finally, we present average evaluation metric values over the real datasets
in Table 2. We find that both algorithms that are based on a greedy selection
heuristic, seeds and greedy-wracc, have the same average score. However, this
score is composed differently for the two methods. Greedy-wracc has a higher
entropy (cent) and cover (ccov) value, while seeds performs better in terms of
average cover size and subgroup quality. Overall, evaluating subgroup sets in
an objective, application independent manner, is difficult, and it is not obvious
that the same method is appropriate for all tasks. However, the results of Ta-

Table 1. Experiments with latent cause data (averages over 20 randomized runs).

PSS precision

aba cg mush wag aba cg mush wag

pagerank 0.54 0.43 0.48 0.51 0.00 0.25 0.25 0.00

seeds 0.58 0.52 0.53 0.52 0.00 0.30 0.40 0.05

gap 0.46 0.30 0.29 0.41 0.00 0.00 0.00 0.00
greedy-wracc 0.45 0.39 0.36 0.50 0.00 0.00 0.00 0.00
nracc 0.23 0.16 0.19 0.13 0.00 0.00 0.00 0.00
wracc 0.40 0.23 0.28 0.33 0.00 0.00 0.00 0.00
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Table 2. Experiments with real data (averages over all seven real datasets).

PSS avg.size ccov cent avg.qual

pagerank 0.56 0.84 0.49 0.33 0.76

seeds 0.74 0.93 0.78 0.67 0.66

gap 0.68 0.58 0.75 0.77 0.73

greedy-wracc 0.74 0.65 0.98 0.86 0.61

nracc 0.49 0.37 0.38 0.47 1.00
wracc 0.59 0.74 0.51 0.44 0.82

ble 2 suggest that the explanation based approaches (pagerank and seeds) find
subgroups of reasonably high quality that have a fairly large cover, meaning the
subgroups should generalize better to unseen data.

7 Conclusions

We introduced explanation networks, a novel, global perspective on subgroups
and how they relate to each other. In particular, we used interventions to define
the notion of explanation, which quantifies the explanatory influence of one
subgroup on another and is normalized by the expected influence from a random
subgroup of the same size. We showed how analogies with network analysis can
be made and how they can lead to novel pattern mining methods. In this paper
we have studied the use of PageRank for pattern ranking and the use of seed
selection (influence maximization) for pattern set selection.

The experiments demonstrate that our explanation based approach provides
advantages when it is of importance to select subgroup descriptions that capture
the data generating process. Specifically, on artificial data we have shown—using
very strict evaluation criteria—that our approach provides better rankings and
pattern sets than the competitors.

Although these results clearly show the potential of explanation networks,
there are also still many directions to be explored. For example, we will perform
user studies in which the analyst is enabled to visually explore the network for
alternative explanations. Further, it is of interest to investigate direct exploration
and mining algorithms that avoid the need to materialise the full explanation
network. As a third and final example, it would be interesting to develop a
statistical test for assessing whether the influence of one subgroup on another
is significant. In general, much is still to be gained from this novel network
perspective on explanation and redundancy in pattern mining.
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