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Abstract—Clustering high dimensional datasets is challenging
due to the curse of dimensionality. One approach to address this
challenge is to search for subspace clusters, i.e., clusters present
in subsets of attributes. Recently the cartification algorithm was
proposed to find such subspace clusters. The distinguishing
feature of this algorithm is that it operates on a neighborhood
database, in which for every object only the identities of the k
closest objects are stored. Cartification was shown to produce
better results than other state-of-the-art subspace clustering
algorithms; however, which clusters it detects was also found to
depend heavily on the setting of the parameters. In other words,
it is not robust to input parameters.

In this paper, we propose a new approach called ranked
cartification that produces more robust results than ordinary
cartification. We develop a transformation that creates ranked
matrices instead of neighborhood databases; we identify clusters
in these ranked matrices. We demonstrate that this method is
more robust than cartification in terms of cluster detection.

I. INTRODUCTION

Clustering is one of the core techniques in data min-
ing; however, one of the challenges when clustering high
dimensional data is the curse of dimensionality: when the
number of dimensions is high, points in many realistic types
of data become equidistant to each other, which makes it
impossible to apply standard clustering techniques based on
such distances [1].

One solution to this challenge is to perform subspace
clustering. In subspace clustering, the data points are not
clustered based on all attributes, but only on a subset of the
attributes. By looking for subspaces in which good clusters
can be identified, subspace clustering allows for the discovery
of useful clusters even in high dimensional data.

Many subspace clustering techniques have been proposed
in the literature [2], [3], [4], [5]. However, many of these
approaches require many parameters to be set, and furthermore
can still be sensitive to the scale of the distance function that
is used [6]. This makes it harder to get reliable results using
these clustering techniques.

To address this challenge, the Cartification approach to sub-
space clustering was developed [2]. In a nutshell, Cartification
detects clusters by finding the co-occurring object sets in local
neighborhoods. The most recent version of Cartification [7]
exploits a well-known property of most subspace clusters: if
a set of objects forms a cluster structure in a combination of
dimensions, then this set of objects must also form a cluster

structure in subsets of these dimensions. Therefore, Carti-
fication first finds the cluster structures in one-dimensional
projections and then iteratively refines these clusters to find
higher-dimensional subspace clusters.

More precisely, for one attribute, Cartification operates as
follows:

1) Calculate pairwise distances between all data points
based on this attribute.

2) For each data point, calculate the k nearest data points
based on these distances, resulting in a neighborhood
database in which the ith row contains a set of objects
representing the k points that are closest to the ith point.
This neighborhood database is a transaction database
and can be represented as a binary database in which
each row has k columns that have the value 1; the other
columns have value 0.

3) Search for large sets of objects that are frequently
repeated in the rows of the resulting binary matrix; each
such set represents a set of data points that are close
to each other, and hence represents a cluster for this
attribute.

For one attribute, the above algorithm returns a set of (possibly
overlapping) clusters. By applying the approach recursively
on the points within each of these clusters, Cartification finds
subspaces consisting of sets of attributes and sets of points.

An advantage of the Cartification approach is that in step
3, it does not use the distance measure itself. This makes
the approach less scale dependent; for instance, whether a
logarithmic scale or a linear scale is used for an attribute has
a smaller impact on the results.

Another advantage of Cartification is the interpretability of
its parameters: neighborhood size k and minimum cluster size.
Setting k and a lower bound on the size of clusters, both
of which are functions of the expected cluster size, is much
easier than determining settings for parameters such as density
or distribution. Our earlier work showed that after parameter
tuning of all methods, Cartification performs better than other
subspace clustering approaches, in the sense that the clusters
it finds are better in terms of an F1 score [2], [7].

On the other hand, earlier work [7] also showed that the
quality of the results of Cartification is highly dependent on
selecting an optimum value for the parameter k. Moreover,
in some cases there is no optimum value for k because the
database contains clusters of different sizes.



In this paper, we address the challenge of setting robust
parameters for Cartification. We propose a new method that
inherits many of the ideas of Cartification, but is less sensitive
to a good choice for the parameter k. Roughly speaking, our
method is as follows:
• instead of creating a binary transaction database in step 2

above, we create a new rank-based matrix, in which for
every data point i, we rank the other points according to
the distance to the point i;

• in the rank-based matrix, we apply a rank-based tiling
method to identify points that are all close to each other.
This rank-based method has only one parameter θ that
influences the size of the tiles that can be found.

Note that by creating a rank-based matrix, we still maintain
the advantage of Cartification that it does not rely on the
scale of the original distance function; indeed, if we would
put a threshold for all the ranks at k, we could easily create
the binary matrix that was used in the original Cartification
approach.

Furthermore, we will experimentally show that the proposed
method is less sensitive to the choice of the parameter θ
and produces clusters that are equally well as the original
Cartification method, or better.

The outline of this paper is as follows: In Section II,
we introduce Cartification; in Section III we introduce our
proposed modification. We compare the binary Cartification
method to our algorithm in Section IV. And we conclude in
Section V.

II. SUBSPACE CLUSTERING USING CARTIFICATION

This paper improves the Cartification approach for subspace
clustering. In this section we will summarize the approach of
the most recent version of Cartification [7]; this provides the
foundations for our improvements.

Cartification operates on relational databases. A relational
database D is defined as a set of data objects {o1, . . . ,on}.
Each data object oi consists of a vector defined over a set
attributes A = {a1, a2, · · · , am}. We are interested in finding
subsets of attributes A ⊆ A and subsets of object identifiers
O ⊆ {1, . . . , n} such that for each attribute a ∈ A, the values
in the selected set of objects O are similar.

The Cartification algorithm is an instance of the SUB-
SPACESEARCH procedure in Algorithm 1, where the pro-
cedure is initialized with A = ∅ and O = {1, . . . , n}.
The SUBSPACESEARCH procedure iteratively considers all
individual attributes, and identifies clusters in each individual
attribute by using the function FINDCLUSTERS. The function
FINDCLUSTERS(O, ad) is the core of the algorithm and looks
for good clusters for attribute ad, restricting the search to ob-
jects in set O. For each resulting cluster, the search continues
recursively if the cluster is large enough.

Due to its recursive nature, Cartification can identify a large
number of subspace clusters. Important aspects in how many
clusters it identifies are the choice for the parameter µ and the
exact implementation of function FINDCLUSTERS.

Algorithm 1 SUBSPACESEARCH(A,O) procedure
Input: A subspace cluster as a pair of attributes A and object

identifiers O
Output: Higher dimensional subspace clusters, being super-

sets of A and subsets of O
1: output subspace cluster (A,O)
2: for each d ∈ {1, . . . ,m} do
3: if ad 6∈ A then
4: S := FINDCLUSTERS (O, ad)
5: for each O′ ∈ S do
6: if |O′| ≥ µ then
7: SUBSPACESEARCH(A ∪ {ad}, O′)

A1

o1 3000
o2 2000
o3 2300
o4 2600
o5 7
o6 11
o7 2100
o8 3500
o9 4
o10 16
o11 2
o12 1
(a) Database

6-NN(o1) {o1,o2,o3,o4,o7,o8}
6-NN(o2) {o1,o2,o3,o4,o7,o8}
6-NN(o3) {o1,o2,o3,o4,o7,o8}
6-NN(o5) {o5,o6,o9,o10,o11,o12}
6-NN(o6) {o5,o6,o9,o10,o11,o12}
6-NN(o7) {o1,o2,o3,o4,o7,o8}
6-NN(o8) {o1,o2,o3,o4,o7,o8}
6-NN(o9) {o5,o6,o9,o10,o11,o12}
6-NN(o10) {o5,o6,o9,o10,o11,o12}
6-NN(o11) {o5,o6,o9,o10,o11,o12}
6-NN(o12) {o5,o6,o9,o10,o11,o12}

(b) Neighborhood Database

Fig. 1: A simple database of 12 object with one attribute and
its Neighborhood DB

In Cartification [7], FINDCLUSTERS relies on a database of
k-nearest neighborhoods. The k-nearest neighborhood of one
object in a database is the set of k objects that are closest
to it; we can construct such a neighborhood for all objects
in the database. More formally, we can define the k-nearest
neighborhood for one object as follows.

Definition 1 (k-Nearest Neighborhood): Let NNk(oi) be
the kth closest object to oi, then the k-nearest neighborhood
of oi is defined as

k-NN(oi) = {oj |δ(oi,oj) ≤ δ(oi,NNk(oi))}

For example, the 6-nearest neighborhood of o1 in Figure 1a
is 6-NN(o1) = {o1,o2,o3,o4,o7,o8}.

A neighborhood database is created based on the k-nearest
neighborhoods.

Definition 2 (Neighborhood Database): Given a parameter
k, the neighborhood database is a vector

(k-NN(o1), k-NN(o1), . . . , k-NN(on)),

where k-NN(oi) represents the set of neighbors of object i.
The neighborhood database of the database in Figure 1 is
shown in Figure 1b.



Note that the neighborhood database is a transaction
database, as widely used in the domain of frequent itemset
mining.

The idea behind Cartification is that the objects that form
clusters co-occur in each others’ neighborhoods. For example
in Figure 1b, objects 1, 2, and 3 are members of the same
cluster and they co-occur in the neighborhoods of the objects
1, 2, 3, 4, 7, and 8.

Consequently, Cartification uses an itemset mining-like ap-
proach to identify sets of frequently co-occurring objects.
This is done by looking for frequent sets of objects in the
neighborhood database [7]. Each such frequent set identifies a
cluster, and is returned by the FINDCLUSTERS function used
in Algorithm 1.

Characteristic for Cartification is that the order of the objects
in the neighborhood matrix determines the clusters that are
found; the distances in the data matrix are not used directly.
This makes the approach less scale dependent.

An issue is, however, how to set k properly: for a large value
of k, the neighborhood of each object will be large; indeed,
for k = |O|, all neighborhoods would be identical and would
contain all objects in O. Within the resulting database, we
could potentially identify every subset of O as a cluster. If we
set k too low, on the other hand, we also limit the maximum
size of clusters that can be found. Finding a value for k that
is neither too low nor too high is hence not easy. To address
this problem, we propose a new approach in this paper that
operates on the ordered neighborhoods.

III. RANKED CARTIFICATION

In this paper, we use the distances between objects in the
data to define a ranked neighborhood matrix. We claim that
in this matrix clusters can be identified more robustly.

We first formalize the problem of finding clusters in ranked
data, followed by a new type of the FINDCLUSTERS algorithm
that finds this type of cluster.

A. Problem Definition

Following the transformation idea of Cartification, we trans-
form a relational database into a ranked neighborhood matrix,
and then use this matrix to detect subspace clusters.

Definition 3 (Ranked Neighborhood): The Ranked Neigh-
borhood of an object oi is an n-dimensional vector, where
n = |D|, and is denoted as N(oi). The jth value of the vector
is defined as

N(oi)j = |{ok ∈ D | δ(oi,ok) < δ(oi,oj)}|,

i.e., each dimension j represents the number of objects
between the object oi and the object oj in the ordered
neighborhood.

o1 o2 o3 o4 o7 o8 o5 o6 o9 o10 o11 o12

o6 10 6 8 9 7 11 1 0 2 3 4 5

Fig. 2: Ranked neighborhood of o6

Figure 2 shows the ranked neighborhood of o6. The
columns of the vector represent the objects 1 through 12. For

TABLE I: Ranked Neighborhood Matrix of Figure 1a

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12

o1 0 5 3 1 8 7 4 2 9 6 10 11
o2 4 0 2 3 8 7 1 5 9 6 10 11
o3 4 2 0 3 8 7 1 5 9 6 10 11
o4 1 5 3 0 8 7 4 2 9 6 10 11
o5 10 6 8 9 0 2 7 11 1 3 4 5
o6 10 6 8 9 1 0 7 11 2 3 4 5
o7 4 2 1 3 8 7 0 5 9 6 10 11
o8 1 5 3 2 8 7 4 0 9 6 10 11
o9 10 6 8 9 1 2 7 11 0 3 4 5
o10 10 6 8 9 2 1 7 11 3 0 4 5
o11 10 6 8 9 3 4 7 11 2 5 0 1
o12 10 6 8 9 3 4 7 11 2 5 1 0

example, o9 is the 2nd closest object to o6, after o5, hence,
the 9th value of the vector is 2.

Based on the ranked neighborhoods we define a ranked
neighborhood matrix.

Definition 4 (Ranked Neighborhood Matrix): The Ranked
Neighborhood Matrix is the matrix of ranked neighborhoods,
i.e., it is the matrix

M =


N(o1)
N(o2)

...
N(on)


Table I shows the ranked neighborhood matrix for the

database in Figure 1a. It has 12 rows and 12 columns rep-
resenting the objects in the database. Each row is the ranked
vector of the respective object: compare the row of o6 to
Figure 2.

The ranked matrix preserves the neighborhood relations in
the original database. If a set of objects is close to each other,
their respective ranks will be under a certain threshold. In
Table I, the mutual ranks of objects 1, 2, 3, 4, 7, 8 are all
below 6. The same observation holds for the objects 4, 6, 9–
12. Considering the original database in Figure 1a, we can see
that both sets of these objects form clusters. Therefore, we can
detect cluster structures by finding the minimum values in a
ranked matrix.

Note the similarity to Cartification: the objects that have a
ranking score below a certain threshold are the neighbors of
the respective object. For example, the objects in 6-NN(o1),
cf. Figure 1b, have values below 6 at the first row of Table I.
Nevertheless, in contrast to the set-based approach of Carti-
fication’s neighborhoods, ranked neighborhoods preserve the
relative similarity information in the neighborhoods. Using the
complete neighborhood information, we can make the cluster
detection more robust, without fixing a threshold k.

The idea is to formalize the discovery of clusters as the
discovery of tiles of low rank in the ranked neighborhood
matrix.

Definition 5 (Tile): Given a set of object identifiers O, a
tile in a ranked neighborhood matrix M is a square submatrix
of the ranked neighborhood matrix. That is, for a given set
of object identifiers O, it consists of all cells Mij of M with
i, j ∈ O.



We define the quality of a tile identified by a set of objects
identifiers O as

f(O) =
∑

i∈O,j∈O
(Mij − θ),

where θ is a scalar value for thresholding.
A minimal tile is a tile that has minimal score f(O).
The idea behind the scoring function is that cells in the

ranked neighborhood matrix with a value higher than the
threshold will contribute a positive term to the summation,
while cells below the threshold contribute a negative term.
Clusters are preferred that have as many cells below the
threshold θ in the corresponding tile.

Note that we need to solve this minimization problem
multiple times, as we need to solve it for the different
attributes independently. The FINDCLUSTERS implementation
for ranked Cartification hence solves the problem of finding
the minimal tile for each attribute independently, while re-
stricting the search to only those objects that it is allowed
to put in a cluster, as identified by the O parameter of the
FINDCLUSTERS function.

Indirectly, the parameter θ influences the size of the clusters
that can be found. In our experimental evaluation, we will
compare the effect of this parameter to that of the k parameter
in the original Cartification method.

B. Properties

The problem of ranked tiling was studied in earlier work
by Le Van et al. [8]. However, given the origin of the ranked
matrix studied in ranked Cartification, we can use a more effi-
cient algorithm in this particular setting. Our algorithm relies
on the particular properties of the sorted ranked neighborhood
matrix.

Definition 6 (Sorted Ranked Neighborhood Matrix):
Given an attribute ad, the sorted ranked neighborhood matrix
for this attribute is the ranked neighborhood matrix obtained
by sorting the objects in the rows and columns according to
their values for attribute ad.

For example, if we sort the rows and columns of the ranked
neighborhood matrix in Table I according to the object values
in a1, then we will obtain the matrix in Table II.

TABLE II: Sorted Ranked Neighborhood Matrix for a1
o12 o11 o9 o5 o6 o10 o2 o7 o3 o4 o1 o8

o12 0 1 2 3 4 5 6 7 8 9 10 11
o11 1 0 2 3 4 5 6 7 8 9 10 11
o9 5 4 0 1 2 3 6 7 8 9 10 11
o5 5 4 1 0 2 3 6 7 8 9 10 11
o6 5 4 2 1 0 3 6 7 8 9 10 11
o10 5 4 3 2 1 0 6 7 8 9 10 11
o2 11 10 9 8 7 6 0 1 2 3 4 5
o7 11 10 9 8 7 6 2 0 1 3 4 5
o3 11 10 9 8 7 6 2 1 0 3 4 5
o4 11 10 9 8 7 6 5 4 3 0 1 2
o1 11 10 9 8 7 6 5 4 3 1 0 2
o8 11 10 9 8 7 6 5 4 3 2 1 0

The following properties hold for a sorted ranked matrix
M:

Property 1: For all i: Mii = 0.

Proof: The diagonals are always zero since the order of
rows and columns is the same and each point is most similar
to itself.

Property 2: For the values in the ith row, the following
statement holds:
• for j and k with i < j < k: Mij ≤Mik;
• for j and k with j < k < i: Mij ≥Mik.

Proof: By definitions 3 and 4, each row of M is a ranked
neighborhood, i.e., Mij = N(oi)j . Furthermore, each column
corresponds with a value xj for the attribute ad. Since the
columns are sorted according to these values, i < j < k =⇒
xi ≤ xj ≤ xk, and hence δ(xi, xj) ≤ δ(xi, xk). The second
half of the property can be proven in a similar way.
We prove a similar property for the columns.

Property 3: For the values in the ith column, it holds that:
• for j and k with i < j < k: Mji ≤Mki;
• for j and k with j < k < i: Mji ≥Mki.

Proof: Similar to the proof of Property 2, i < j < k =⇒
xi < xj < xk =⇒ Mji ≤ Mki. Here, the additional
argument is that by moving lower down or higher up in a
column from a particular Mii, the number of objects ranked
lower than the object in column i can only increase, as the
objects lower down and higher up the matrix for this column
are further away from the object oi.
From these properties follows an important new property that
allows us to improve the search significantly:

Property 4: Minimal tiles are contiguous, i.e., the set of
objects chosen in a minimal tile O always consists of a range
O = {i, i+ 1, . . . , j − 1, j} for some 1 ≤ i ≤ j ≤ n.

Proof: This follows from the Properties 2 and 3.
All of these properties can be observed in Table II: (1)

diagonals are all zero, (2) the value for o5 at the row of o6

is smaller than the value for o9, because o5 is closer to the
diagonal, (3) similarly, the value for o5 is smaller at the row
of o2 than the value for o5 at the row of o6.

C. Algorithm

To find subspace clusters, we propose the CARTIRANK al-
gorithm, which follows the procedure in Algorithm 1. Similar
to Cartification, CARTIRANK is initialized with an object set
containing all possible objects and an empty dimension set.
Firstly, it finds the clusters in one dimensional projections,
and then, iteratively refines them to find higher dimensional
subspace clusters. The main difference between CARTIRANK
and Cartification is the approach taken to detect one di-
mensional clusters, i.e., it uses a different FINDCLUSTERS
function. Instead of mining frequently co-occurring object sets
in neighborhood databases, CARTIRANK uses sorted ranked
neighborhood matrices.

Property 4 allows us to develop an efficient search algorithm
to find minimal tiles: instead of searching over all possible
subsets of objects, we search over all possible combinations
of i and j with 1 ≤ i ≤ j ≤ n. This yields the algorithm in
Algorithm 2 for finding a minimal tile. SQUARETILER takes
the sorted ranked neighborhood matrix and the threshold θ



Algorithm 2 SQUARETILER: Tiling on Sorted Ranked Matrix
Input: M: Rank Matrix, θ
Output: min t: Minimum tile

1: min t := (0, 0) // Minimum tile
2: min ts := −θ // Minimum tile sum
3: for i := 1 to n do
4: ts := Mii − θ // Tile sum
5: for j := i+ 1 to n do
6: ns := (Mij − θ)+ (M(i+1)j − θ)+ · · ·+(Mjj − θ)
7: +(Mji−θ)+(Mj(i+1)−θ)+ · · ·+(Mj(j−1)−θ)
8: if ns > 0 then
9: Continue with the next i

10: ts := ts+ ns
11: if ts < min ts then
12: min ts := ts
13: min t := (i, j)
14: return min t

as parameter. Exploiting the fact that ranks will only increase
when increasing j, it stops growing a tile if the new addition
of values does not decrease the sum (lines 8 and 9). This
optimization exploits Properties 2 and 3.

IV. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the cluster find-
ing capabilities of CARTIRANK. We compare the robustness
of CARTIRANK and Cartification with respect to parameter
settings and data distributions. The overall cluster quality is
evaluated in comparison with other state-of-the-art subspace
clustering methods. For the reproducibility of the results, we
provide the implementation and the datasets on our web site.1

A. Robust Cluster Detection

We compare the cluster detection capabilities of Cartifica-
tion and CARTIRANK. Both of the algorithms exploit one-
dimensional projections to detect clusters. Therefore, they
should be able to find clusters with various sizes and properties
in projections without requiring strict parameter settings. In
other words, the quality of the clusters should be robust to both
parameters and the characteristics of the data. To evaluate the
robustness of one-dimensional cluster finding capabilities, we
generated 6 synthetic datasets. Properties of these dataset are
shown in Table III. ns25 and ns50 have three clusters that are
not separable, i.e., the diameters of the clusters are larger than
the distances between clusters. s3 has 3 clusters with sizes 25,
50, and 25. vs4, vs5, and vs6 have clearly separated clusters
of different sizes.

On these 6 datasets, we ran Cartification [7] and CARTI-
RANK with different neighborhood sizes, by setting θ and k
respectively, and report the quality of the found clusters. Since
we know the true clusters beforehand, we use a supervised
F1 score to assess the quality of the found clusters. The F1
score is the harmonic mean of the precision and recall between

1http://adrem.uantwerpen.be/cartirank

TABLE III: Datasets for robustness tests

Name # of
clusters

Cluster Sizes Cluster
Radius

Distance
Between
Clusters

ns25 3 25-25-25 4 3
ns50 3 50-50-50 4 3

s3 3 25-50-25 4 4
vs4 4 25-40-55-70 4 8
vs5 5 50-25-50-25-50 4 8
vs6 6 15-30-45-45-30-15 4 8

two cluster sets. Precision between a known cluster C1 and a
detected cluster C2 is the size of the intersection of C1 and
C2 divided by the size of C2. Likewise, recall is the number
of common objects between C1 and C2 divided by the size
of C1. We map each known cluster to the detected cluster
which produces the maximum F1 score and take the average
of the scores. In other words, we measure whether the true
clusters are among the clusters found using CARTIRANK and
Cartification.

Figure 3 shows the F1 scores of the algorithms. We see the
benefits of using the similarity information in the neighbor-
hoods, i.e., using ranks, on all of the datasets: CARTIRANK
produces better quality clusters for a wider range of θ values.
When the clusters are the same size but not separated, Carti-
fication can detect the perfect clusters only for one parameter
value, while CARTIRANK can produce the perfect clustering
for a wide range of values.

The benefits are more visible on datasets that have clusters
of various sizes, namely vs4 and vs6. Given that k defines a
limit on the size of clusters that can be found, cartification can
find only one cluster size at a time, and thus, can never find
all of the clusters at once. CARTIRANK can produce a perfect
clustering for all of the datasets.

Our experiments with a wide range of values for the
parameter µ show that the effect of this parameter is negligible.
For the same θ, in these experiments, the µ parameter does
not change the outcome at all, or changes the F1 score of the
found clusters not more than a value of 0.05.

B. Subspace Clustering

To evaluate subspace cluster finding capabilities of the
methods, we generated a set of datasets. Each dataset has five
sets of overlapping clusters which are hidden in five sets of
attributes. An object can be a member of one cluster according
to one attribute and a different cluster in another attribute.

An example cluster formation is visualized in Figure 6, in
which the columns represent attributes and the rows represent
objects. Cluster assignments in different attributes are shown
as Ci. For example o1 and oi are in cluster C1 according to
attributes a1 and a2, but they are in different clusters in ak.

Generation parameters for the datasets are shown in Ta-
ble IV. After generating datasets using these parameters, we
added two redundant dimensions with uniform random values
along with 5% random noise.

The F1 scores of the found clusters for a range of parameters
are shown in Figure 4. As in one-dimensional clustering, the
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(c) s3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CartiRank Cartification

Theta / k

F
1

 S
c
o

re

(d) vs4

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CartiRank Cartification

Theta / k

F
1

 S
c
o

re

(e) vs5

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CartiRank Cartification

Theta / k

F
1

 S
c
o

re

(f) vs6

Fig. 3: F1 Scores of the methods for a range of parameters

TABLE IV: Generation parameters of subspace cluster datasets

Name Cluster # Attributes/Cluster Cluster Sizes Attribute #
SVS-1 15-25 2-6 50-100 10-30
SVS-2 15-25 2-6 50-150 10-30
SVS-3 15-25 2-5 50-200 10-30

qualities of the clusters produced by CARTIRANK are always
in a certain interval. For the optimal parameters settings, the
quality of the found clusters are comparable. There is a catch
however: Figure 7 shows the number of clusters found by
each of the methods. We can see that cartification outputs
so many clusters that they can not be put to good use in
practical scenarios. Clusters found by CARTIRANK are orders

of magnitude less redundant.

We compare the quality of CARTIRANK with two other
state-of-the-art subspace clustering algorithms. Figure 5 shows
the F1 scores of CARTIRANK, Cartification, PROCLUS [4],
and STATPC [5] for subspace clustering datasets. We opti-
mized the parameters of the algorithms for the best results.
As expected, PROCLUS can cope neither with overlapping
clusters nor with noise. STATPC uses an approximation, and
obviously, its assumptions do not hold for the datasets under
consideration. Moreover, optimizing the complex parameters
of STATPC is not trivial.
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Fig. 4: Quality of the subspace clusters
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Fig. 5: The best clusters found by the different algorithms

V. CONCLUSION

In this paper, we tackle the problem of detecting subspace
clusters. Following our previous work [2], [7], [8], we exploit
local neighborhoods by transforming a relational database into
sorted ranked neighborhood matrices. We study the properties
of this matrix and show the relation between minimal tiles in
the matrix and the cluster structures in the data. We propose
a method that exploits the intrinsic properties of the matrix to
efficiently find interesting tiles in them.

In contrast to the binary neighborhood databases used in
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Fig. 6: Subspace clusters in synthetic datasets

cartification, ranked matrices preserve the similarity informa-
tion in the neighborhoods. Therefore, mining subspace clusters
by using the ranked neighborhood matrices is more robust
to both input parameters and the formation of the clusters.
Moreover, CARTIRANK produces a manageable number of
clusters, making it a better fit for practical use.

The use of ranked neighborhoods matrices however comes
at a cost: the computations on these matrices are more costly
and require more memory. Although exploiting the properties
of sorted ranked neighborhood matrices improves the core
performance drastically, CARTIRANK is still slower than the
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Fig. 7: The number of clusters found by the methods

most recent Cartification method [7]. The optimization of
memory and processor use is left as a future work.
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